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ABSTRACT 
Apache Lucene is a modern, open source search library designed 
to provide both relevant results as well as high performance.  
Furthermore, Lucene has undergone significant change over the 
years, starting as a one-person project to one of the leading search 
solutions available.  Lucene is used in a vast range of applications 
from mobile devices and desktops through Internet scale 
solutions.  The evolution of Lucene has been quite dramatic at 
times, none more so than in the current release of Lucene 4.0.  
This paper presents both an overview of Lucene’s features as well 
as details on its community development model, architecture and 
implementation, including coverage of its indexing and scoring 
capabilities.   

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information Search 
and Retrieval 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Information Retrieval, Open Source, Apache Lucene. 

1. INTRODUCTION 
Apache Lucene is an open source Java-based search library 
providing Application Programming Interfaces for performing 
common search and search related tasks like indexing, querying, 
highlighting, language analysis and many others.  Lucene is 
written and maintained by a group of contributors and committers 
of the Apache Software Foundation (ASF) [1] and is licensed 
under the Apache Software License v2 [2].  It is built by a loosely 
knit community of “volunteers” (as the ASF views them, most 
contributors are paid to work on Lucene by their respective 
employers) following a set of principles collectively known as the 
“Apache Way” [3]. 

Today, Lucene enjoys widespread adoption, powering search on 
many of today’s most popular websites, applications and devices, 
such as Twitter, Netflix and Instagram [20, 4, 5] as well as many 

other search-based applications [6].  Lucene has also spawned 
several search-based services such as Apache Solr [7] that provide 
extensions, configuration and infrastructure around Lucene as 
well as native bindings for programming languages other than 
Java.  As of this writing, Lucene 4.0 is on the verge of being 
officially released (it likely will be released by the time of 
publication) and represents a significant milestone in the 
development of Lucene due to a number of new features and 
efficiency improvements as compared to previous versions of 
Lucene.  This paper’s focus will primarily be on Lucene 4.0. 

The main capabilities of Lucene are centered on the creation, 
maintenance and accessibility of the Lucene inverted index [31].  
After reviewing Lucene’s background in section 2 and related 
work in section 3, the remainder of this paper will focus on the 
features, architecture and open source development methodology 
used in building Lucene 4.0.  In Section 4 we’ll provide a broad 
overview of Lucene’s features.  In section 5, we’ll examine 
Lucene’s architecture and functionality in greater detail by 
looking at how Lucene implements its indexing and querying 
capabilities.  Section 6 will detail Lucene’s open source 
development model and how it directly contributes to the success 
of the project.  Section 7 will provide a meta-analysis of Lucene’s 
performance in various search evaluations such as TREC, while 
section 8 and 9 will round out the paper with a look at the future 
of Lucene and the conclusions that can be drawn from this paper, 
the project and the broader Lucene community. 

2. BACKGROUND 
Originally started in 1997 by Doug Cutting as a means to learning 
Java [8] and subsequently donated to The Apache Software 
Foundation (ASF) in 2001 [9], Lucene has had 32 official releases 
encompassing major, minor and patch releases [10, 11].  The most 
current of those releases, at the time of writing is Lucene 3.6.0.  

From its earliest days, Lucene has implemented a modified vector 
space model that supports incremental modifications to the index 
[12, 19, 37].  For querying, Lucene has developed extensively 
from the first official ASF release of 1.2.  However even from the 
1.2 release, Lucene supported a variety of query types, including: 
fielded term with boosts, wildcards, fuzzy (using Levenshtein 
Distance [13]), proximity searches and boolean operators (AND, 
OR, NOT) [14].  Lucene 3.6.0 continues to support all of these 
queries and the many more that have been added throughout the 
lifespan of the project, including support for regular expressions, 
complex phrases, spatial distances and arbitrary scoring functions 
based on the values in a field (e.g. using a timestamp or a price as 
a scoring factor) [10].  For more information on these features and 
Lucene 3 in general, see [15]. 

Three years in the making, Lucene 4.0 builds on the work of a 
number of previous systems and ideas, not just Lucene itself.  
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Lucene incorporates a number of new models for calculating 
similarity, which will be described later.  Others have also 
modified Lucene over the years as well: [16] modified Lucene to 
add BM25 and BM25F;  [17] added “sweet spot similarity” and 
ILPS at the U. of Amsterdam has incorporated language modeling 
into Lucene [18]. Lucene also includes a number of new 
abstractions for logically separating out the index format and 
related data structures (Lucene calls them Codecs and they are 
similar in theory to Xapian’s Backends [32]) from the storage 
layer - see the section Codec API for more details. 

3. RELATED WORK 
There are numerous open source search engines available today 
[30], with different feature sets, performance characteristics, and 
software licensing models. Xapian [32] is a portable IR library 
written in the C++ programming language that supports 
probabilistic retrieval models.  The Lemur Project [33] is a toolkit 
for language modeling and information retrieval. The Terrier IR 
platform [34] is an open-source toolkit for research and 
experimentation that supports a large variety of IR models. 
Managing Gigabytes For Java (MG4J) [35] is a free full-text 
search engine designed for large document collections. 

4. LUCENE 4 FEATURES 
Lucene 4.0 consists of a number of features that can be broken 
down into four main categories: analysis of incoming content and 
queries, indexing and storage, searching, and ancillary modules 
(everything else).  The first three items contribute to what is 
commonly referred to as the core of Lucene, while the last 
consists of code libraries that have proven to be useful in solving 
search-related problems (e.g. result highlighting.) 

4.1 Language Analysis 
The analysis capabilities in Lucene are responsible for taking in 
content in the form of documents to be indexed or queries to be 
searched and converting them into an appropriate internal 
representation that can then be used as needed.  At indexing time, 
analysis creates tokens that are ultimately inserted into Lucene’s 
inverted index, while at query time, tokens are created to help 
form appropriate query representations.  The analysis process 
consists of three tasks which are chained together to operate on 
incoming content: 1) optional character filtering and 
normalization (e.g. removing diacritics), 2) tokenization, and 3) 
token filtering (e.g. stemming, lemmatization, stopword removal, 
n-gram creation).  Analysis is described in greater detail in the 
section on Lucene’s document model below. 

4.2 Indexing and Storage 
Lucene’s indexing and storage layers consist of the following 

primary features, many of which will be discussed in greater 
detail in the Architecture and Implementation section: 

• Indexing of user defined documents, where documents 
can consist of one or more fields containing the content 
to be processed and each field may or may not be 
analyzed using the analysis features described earlier. 

• Storage of user defined documents. 

• Lock-free indexing [20] 

• Near Real Time indexing enabling documents to be 
searchable as soon as they are done indexing 

• Segmented indexing with merging and pluggable merge 
policies [19] 

• Abstractions to allow for different strategies for I/O, 
storage and postings list data structures [36] 

• Transactional support for additions and rollbacks 

• Support for a variety of term, document and corpus 
level statistics enabling a variety of scoring models [24]. 

4.3 Querying 
On the search side, Lucene supports a variety of query options, 
along with the ability to filter, page and sort results as well as 
perform pseudo relevance feedback.  For querying, Lucene 
provides over 50 different kinds of query representations, as well 
as several query parsers and a query parsing framework to assist 
developers in writing their own query parser [24].  More 
information on query capabilities will be provided later. 

Additionally, Lucene 4.0 now supports a completely pluggable 
scoring model [24] system that can be overridden by developers.  
It also ships with several pre-defined models such as Lucene’s 
traditional vector-space scoring model, Okapi BM25 [21], 
Language Modeling [25], Information Based [22] and Divergence 
from Randomness [23]. 

4.4 Ancillary Features 
Lucene’s ancillary modules contain a variety of capabilities 
commonly used in building search-based applications.  These 
libraries consist of code that is not seen as critical to the indexing 
and searching process for all people, but nevertheless useful for 
many applications.  They are packaged separately from the core 
Lucene library, but are released at the same time as the core and 
share the core’s version number.  There are currently 13 different 
modules and they include code for performing: result highlighting 
(snippet generation), faceting, spatial search, document grouping 
by key (e.g. group all documents with the same base URL 
together), document routing (via an optimized, in-memory, single 
document index), point-based spatial search and auto-suggest. 

5. ARCHITECTURE AND 
IMPLEMENTATION 
Lucene’s architecture and implementation has evolved and 
improved significantly over its lifetime, with much of the work 
focused around usability and performance, with the work often 
falling into the areas of memory efficiencies and the removal of 
synchronizations.  In this section, we’ll detail some of the 
commonly used foundation classes of Lucene and then look at 
how indexing and searching are built on top of these.  To get 
started, Figure 1 illustrates the high-level architecture of Lucene 
core.  

5.1 Foundations 
There are two main foundations of Lucene 4: text analysis and our 
use of finite state automata, both of which will be discussed in the 
subsections below. 

5.1.1 Text Analysis 
The text analysis chain produces a stream of tokens from the input 
data in a field (Figure 3). Tokens in the analysis chain are 
represented as a collection of “attributes”. In addition to the 
expected main “term” attribute that contains the token value there 



can be many other attributes associated with a token, such as 
token position, starting and ending offsets, token type, arbitrary 
payload data (a byte array to be stored in the index at the current 
position), integer flags, and other custom application-defined 
attributes (e.g. part-of-speech tags). 

Analysis chains consist of character filters (useful for stripping 
diacritics, for instance), tokenizers (which are the sources of token 
streams) and series of token filters that modify the original token 
stream. Custom token attributes can be used for passing bits of 
per-token information between the elements of the chain. 

Lucene includes a total of five character filtering 
implementations, 18 tokenization strategies and 97 token filtering 
implementations and covers 32 different languages [24]. These 
token streams performing specific functions such as tokenization 
by patterns, rules and dictionaries (e.g. whitespace, regex, Chinese 
/ Japanese / Korean, ICU), specialized token filters for efficient 
indexing of numeric values and dates (to support trie-based 
numerical range searching), language-specific stemming and stop 
word removal, creation of character or word-level n-grams, 
tagging (UIMA), etc. Using these existing building blocks, or 
custom ones, it’s possible to express very complex text analysis 
pipelines. 

5.1.2 Finite State Automata 
Lucene 4.0 requires significantly less main memory than previous 
releases. The in-memory portion of the inverted index is 
implemented with a new finite state transducer (FST) package. 
Lucene’s FST package supports linear time construction of the 
minimal automaton [38], FST compression [39], reverse lookups, 
and weighted automata. Additionally, the API supports pluggable 
output algebras. Synonym processing, Japanese text analysis, spell 
correction, auto-suggest are now all based on Lucene’s automata 
package, with additional improvements planned for future 
releases. 

5.2 Indexing 
 Lucene uses the well-known inverted index representation, with 
additional functionality for keeping adjacent non-inverted data on 
a per-document basis. Both in-flight and persistent data uses 
variety of encoding schemas that affect the size of the index data 
and the cost of the data compression. Lucene uses pluggable 
mechanisms for data coding (see the section on Codec API below) 
and for the actual storage of index data (Directory API). 
Incremental updates are supported and stored in index extents 

(referred to as “segments”) that are periodically merged into 
larger segments to minimize the total number of index parts [19]. 

5.2.1 Document Model 
Documents are modeled in Lucene as a flat ordered list of fields 
with content. Fields have name, content data, float weight (used 
later for scoring), and other attributes, depending on their type, 
which together determine how the content is processed and 
represented in the index. There can be multiple fields with the 
same name in a document, in which case they will be processed 
sequentially. Documents are not required to have a unique 
identifier (though they often carry a field with this role for 
application-level unique key lookup) - in the process of indexing 
documents are assigned internal integer identifiers. 

5.2.2 Field Types 
There are two broad categories of fields in Lucene documents - 
those that carry content to be inverted (indexed fields) and those 
with content to be stored as-is (stored fields). Fields may belong 
to either or both categories (e.g. with content both to be stored and 
inverted). Both indexed and stored fields can be submitted for 
storing / indexing, but only stored fields can be retrieved - the 
inverted data can be accessed and traversed using a specialized 
API. 
Indexed fields can be provided in plain text, in which case it will 
be first passed through text analysis pipeline, or in its final form 
of a sequence of tokens with attributes (so called “token stream”). 
Token streams are then inverted and added to in-memory 
segments, which are periodically flushed and merged. Depending 
on the field options, various token attributes (such as positions, 
starting / ending offsets and per-position payloads) are also stored 
with the inverted data. It’s possible e.g. to omit positional 
information while still storing the in-document term frequencies, 
on a per-field basis [36]. 

A variant of an indexed field is a field where the creation and 
storage of term frequency vectors was requested. In this case the 
token stream is used also for building a small inverted index 
consisting of data from the current field only, and this inverted 
data is then stored on a per-document and per-field basis. Term 
frequency vectors are particularly useful when performing 
document highlighting, relevance feedback or when generating 
search result snippets (region of text that best matches the query 
terms). 
Stored fields are typically used for storing auxiliary per-document 
data that is not searchable but would be cumbersome to obtain 
otherwise (e.g. it would require retrieval from a separate system). 
This data is stored as byte arrays, but can be manipulated through 
a more convenient API that presents it as UTF-8 strings, numbers, 

Figure 1 Lucene's Architecture 

Figure 2 Structure of a Lucene segment. 
 



arrays etc., or optionally it can be stored using strongly typed API 
(so called “doc values”) that can use a more optimized storage 
format. This kind of strongly typed storage is used for example to 
store per-document and per-field weights (so called “norms”, as 
they typically correspond to field length normalization factor that 
affects scoring). 

5.2.3 Indexing Chain 
The resulting token stream is finally processed by the indexing 
chain and the supported attributes (term value, position, offsets 
and payload data) are added to the respective posting lists for each 
term (Figure 3). Term values don’t have to be UTF-8 strings as in 
previous versions of Lucene - version 4.0 fully supports arbitrary 
byte array values as terms, and can use custom comparators to 
define the sorting order of such terms. 

Also at this stage documents are assigned their internal document 

identifiers, which are small sequential integers (for efficient delta 
compression). These identifiers are ephemeral - they are used for 
identifying document data within a particular segment, so they 
naturally change after two or more segments are merged (during 
index compaction). 

5.3 Incremental Index Updates 
Indexes can be updated incrementally on-line, simultaneously 
with searching, by adding new documents and/or deleting existing 
ones (sub-document updates are a work in progress). Index 
extents are a common way to implement incremental index 
updates that don’t require modifying the existing parts of the 
index [19]. 
When new documents are submitted for indexing, their fields 
undergo the process described in the previous section, and the 
resulting inverted and non-inverted data is accumulated in new in-
memory index extents called “segments” (Figure 2), using a 
compact in-memory representation (a variant of Codec - see 
below). Periodically these in-memory segments are flushed to a 
persistent storage (using the Codec and Directory abstractions), 
whenever they reach a configurable threshold - for example, the 
total number of documents, or the size in bytes of the segment. 

5.3.1 The IndexWriter Class 
The IndexWriter is a high-level class responsible for processing 
index updates (additions and deletions), recording them in new 
segments and creating new commit points, and occasionally 
triggering the index compaction (segment merging). It uses a pool 
of DocumentWriter-s that create new in-memory segments. 

As new documents are being added and in-memory segments are 
being flushed to storage, periodically an index compaction 
(merging) is executed in the background that reduces the total 
number of segments that comprise the whole index. 

Document deletions are expressed as queries that select (using 
boolean match) the documents to be deleted. Deletions are also 
accumulated, applied to the in-memory segments before flushing 
(while they are still mutable) and also recorded in a commit point 
so that they can be resolved when reading the already flushed 
immutable segments. 

Each flush operation or index compaction creates a new commit 
point, recorded in a global index structure using a two-phase 
commit. The commit point is a list of segments and deletions 
comprising the whole index at the point in time when the commit 
operation was successfully completed. Segment data that is being 
flushed from in-memory segments is encoded using the 
configured Codec implementation (see the section below). 

In Lucene 3.x and earlier some segment data was mutable (for 
example, the parts containing deletions or field normalization 
weights), which negatively affected the concurrency of writes and 
reads - to apply any modifications the index had to be locked and 
it was not possible to open the index for reading until the update 
operation completed and the lock was released. 
In Lucene 4.0 the segments are fully immutable (write-once), and 
any changes are expressed either as new segments or new lists of 
deletions, both of which create new commit points, and the 
updated view of the latest version of the index becomes visible 
when a commit point is recorded using a two-phase commit. This 
enables lock-free reading operations concurrently with updates, 
and point-in-time travel by opening the index for reading using 
some existing past commit point. 

5.3.2 The IndexReader Class 
The IndexReader provides high-level methods to retrieve stored 
fields, term vectors and to traverse the inverted index data. Behind 
the scenes it uses the Codec API to retrieve and decode the index 
data (Figure 1). 

The IndexReader represents the view of an index at a specific 
point in time. Typically a user obtains an IndexReader from either 
a commit point (where all data has been written to disk), or 
directly from IndexWriter (a “near-realtime” snapshot that 
includes both the flushed and the in-memory segments). 

As mentioned in the previous section, segments are immutable so 
the deletions don’t actually remove data from existing segments. 
Instead the delete operations are resolved when existing segments 
are open, so that the deletions are represented as a bitset of live 
(not deleted) documents. This bitset is then used when 
enumerating postings and stored fields and during search to hide 
deleted documents. Global index statistics are not recalculated, so 
they are slightly wrong (they include the term statistics of postings 
that belong to deleted documents). For performance reasons the 
data of deleted documents is actually removed only during 
segment merging, and then also the global statistics are 
recalculated. 

The IndexReader API follows the composite pattern: an 
IndexReader representing a specific commit point is actually a list 
of sub-Readers for each segment. Composed IndexReaders at 
different points in time share underlying subreaders with each 
other when possible: this allows for efficient representation of 
multiple point-in-time views. An extreme example of this is the 
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Twitter search engine, where each search operation obtains a new 
IndexReader [20]. 

5.4 Codec API 
While Lucene 3.x used a few predefined data coding algorithms (a 
combination of delta and variable-length byte coding), in Lucene 
4.0 all parts of the code that dealt with coding and compression of 
data have been separated and grouped into a Codec API. 

This major re-design of Lucene architecture has opened up the 
library for many improvements, customizations and for 
experimentation with recent advances in inverted index 
compression algorithms. The Codec API allows for complete 
customization of how index data is encoded and written out to the 
underlying storage: the inverted and non-inverted parts, how it’s 
decoded for reading and how segment data is merged. The 
following section explains in more detail how inverted data is 
represented using this API. 

5.4.1 A 4-D View of the Inverted Index 
The Codec API presents inverted index data as a logical four-
dimensional table that can be traversed using enumerators. The 
dimensions are: field, term, document, and position - that is, an 
imaginary cursor can be advanced along rows and columns of this 
table in each dimension, and it supports both “next item” and 
“seek to item” operations, as well as retrieving row and cell data 
at the current position. For example, given a cursor at field f1 and 
term t1 the cursor can be advanced along this posting list to the 
data for document d1, where the in-document frequency for this 
term (TF) can be retrieved, and then positional data can be iterated 
to retrieve consecutive positions, offsets and payload data at each 
position within this document. 

This level of abstraction is sufficient to not only support many 
types of query evaluation strategies, but to also clearly separate 
how the underlying data structures should be organized and 
encoded and to encapsulate this concern in Codec 
implementations. 

5.4.2 Lucene 4.0 Codecs 
The default codec implementation (aptly named “Lucene40”) uses 
a combination of well-known compression algorithms and 
strategies selected to provide a good tradeoff between index size 
(and related costs of I/O seeks) and coding costs. Byte-aligned 
coding is preferred for its decompression speed - for example, 
posting lists data uses variable-byte coding of delta values, with 
multi-level skip lists, using the natural ordering of document 
identifiers, and interleaving of document ID-s and position data 
[36]. For frequently occurring very short lists (according to the 
Zipf’s law) the codec switches to using the “pulsing” strategy that 
inlines postings with the term dictionary [19]. The term dictionary 
is encoded using a “block tree” schema that uses shared prefix 
deltas per block of terms (fixed-size or variable-size) and skip 
lists. The non-inverted data is coded using various strategies, for 
example per-document strongly typed values are encoded using 
fixed-length bit-aligned compression (similar to Frame-of-
Reference coding), while the regular stored field data uses no 
compression at all (applications may of course compress 
individual values before storing). 

The Lucene40 codec offers, in practice, a good balance between 
high performance indexing and fast execution of queries. Since 
the Codec API offers a clear separation between the functionality 
of the inverted index and the details of its data formats, it’s very 
easy in Lucene 4.0 to customize these formats if the default codec 
is not sufficient.  The Lucene community is already working on 

several modern codecs, including PForDelta, Simple9/16/64 (both 
likely to be included in Lucene 4.0) and VSEncoding [26], and 
experimenting with other representations for the term dictionary 
(e.g. using Finite State Transducers). 

The Codec API opens up many possibilities for runtime 
manipulation of postings during writing or reading (e.g. online 
pruning and sharding, adding Bloom filters for fail-fast lookups 
etc.), or to accommodate specific limitations of the underlying 
storage (e.g. Appending codec that can work with append-only 
filesystems such as Hadoop DFS). 

5.4.3 Directory API 
Finally, the physical I/O access is abstracted using the Directory 
API that offers a very simple file system-like view of persistent 
storage.  The Lucene Directory is basically a flat list of “files”. 
Files are write-once, and abstractions are provided for sequential 
and random access for writing and reading of files. 

This abstraction is general enough and limited enough that 
implementations exist both using java.io.File, NIO buffers, in 
memory, distributed file systems (e.g. Amazon S3 or Hadoop 
HDFS), NoSQL key-value stores and even traditional SQL 
databases. 

5.5 SEARCHING 
Lucene’s primary searching concerns can be broken down into a 
few key areas, which will be discussed in the following 
subsections: Lucene’s query model, query evaluation, scoring and 
common search extensions.  We’ll begin by looking at how 
Lucene models queries. 

5.5.1 Query Model and Types 
Lucene does not enforce a particular query language: instead it 
uses Query objects to perform searches. Several Queries are 
provided as building blocks to express complex queries, and 
developers can construct their own programmatically or via a 
Query Parser. 

Query types provided in Lucene 4.0 include: term queries that 
evaluate a single term in a specific field; boolean queries 
(supporting AND, OR and NOT) where clauses can be any other 
Query; proximity queries (strict phrase, sloppy phrase that allows 
for up to N intervening terms) [40, 41]; position-based queries 
(called “spans” in Lucene parlance) that allow to express more 
complex rules for proximity and relative positions of terms; 
wildcard, fuzzy and regular expression queries that use automata 
for evaluating matching terms; disjunction-max query that assigns 
scores based on the best match for a document across several 
fields; payload query that processes per-position payload data, etc.  
Lucene also supports the incorporation of field values into 
scoring.  Named “function queries”, these queries can be used to 
add useful scoring factors like time and distance into the scoring 
model. 

This large collection of predefined queries allows developers to 
express complex criteria for matching and scoring of documents, 
in a well-structured tree of query clauses. 

Typically a search is parsed by a Query Parser into a Query tree, 
but this is not mandatory: queries can also be generated and 
combined programmatically.   Lucene ships with a number of 
different query parsers out of the box.  Some are based on JavaCC 
grammars while others are XML based.  Details on these query 
parsers and the framework is beyond the scope of this paper. 



5.5.2 Query Evaluation 
When a Query is executed, each inverted index segment is 
processed sequentially for efficiency: it is not necessary to operate 
on a merged view of the postings lists. For each index segment, 
the Query generates a Scorer: essentially an enumerator over the 
matching documents with an additional score() method. 

Scorers typically score documents with a document-at-a-time 
(DAAT) strategy, although the commonly used BooleanScorer 
sometimes uses a TAAT (term-at-a-time)-like strategy when the 
number of terms is low [27]. 

Scorers that are “leaf” nodes in the Query tree typically compute 
the score by passing raw index statistics (such as term frequency) 
to the Similarity, which is a configurable policy for term ranking. 
Scorers higher-up in the tree usually operate on sub-scorers, e.g. a 
Disjunction scorer might compute the sum of its children’s scores. 
Finally, a Collector is responsible for actually consuming these 
Scorers and doing something with the results: for example 
populating a priority queue of the top-N documents [42]. 
Developers can also implement custom Collectors for advanced 
use cases such as early termination of queries, faceting, and 
grouping of similar results. 

5.5.3 Similarity 
The Similarity class implements a policy for scoring terms and 
query clauses, taking into account term and global index statistics 
as well as specifics of a query (e.g. distance between terms of a 
phrase, number of matching terms in a multi-term query, 
Levenshtein edit distance of fuzzy terms, etc). Lucene 4 now 
maintains several per-segment statistics (e.g. total term frequency, 
unique term count, total document frequency of all terms, etc) to 
support additional scoring models. 
As a part of the indexing chain this class is responsible for 
calculating the field normalization factors (weights) that usually 
depend on the field length and arbitrary user-specified field 
boosts. However, the main role of this class is to specify the 
details of query scoring during query evaluation. 

As mentioned earlier, Lucene 4 provides several Similarity 
implementations that offer well-known scoring models: TF/IDF 
with several different normalizations, BM25, Information-based, 
Divergence from Randomness, and Language Modeling. 

5.5.4 Common Search Extensions 
Keyword search is only a part of query execution for many 
modern search systems. Lucene provides extended query 
processing capabilities to support easier navigation of search 
results. The faceting module allows for browsing/drilldown 
capabilities, which is common in many e-commerce applications. 
Result grouping supports folding related documents (such as those 
appearing on the same website) into a single combined result. 
Additional search modules provide support for nested documents, 
query expansion, and geospatial search. 

6. Open Source Engineering 
Lucene’s development is a collaboration of a broad set of 
contributors along with a core set of committers who have 
permission to actually change the source code hosted at the ASF.  
At the heart of this approach is a meritocratic model whereby 
permissions to the code and documentation are granted based on 
contributions (both code-based and non-code based) to the 
community over a sustained period of time and after being voted 
in by Lucene’s Project Management Committee (PMC) in 
recognition of these contributions [3]. 

Development is undertaken as a loose federation of programmers 
coordinating development through the use of mailing lists, issue 
tracking software, IRC channels and the occasional face-to-face 
meeting.  While all committers may veto someone else’s changes, 
these rarely happen in practice due to coordination via the 
communication mechanisms mentioned.  Project planning is very 
lightweight and is almost always coordinated by patches to the 
code that demonstrate the desired feature to some level more than 
abstract discussions about potential implementations.  Releases 
are the coordinated effort of a community-selected (someone 
usually volunteers) release manager and a grouping of other 
people who validate release candidates and vote to release the 
necessary libraries.  Lucene developers also strive to make sure 
that backwards compatibility (breakages, when known, are 
explicitly documented) is maintained between minor versions and 
that all major version upgrades are able to consume the index of 
the last minor version of the previous release, thereby reducing 
the cost of upgrades.   

Lucene developers are often faced with the need to make tradeoffs 
between speed, index size and memory consumption, since 
Lucene is used in many demanding environments (Twitter, for 
example, processes, as of Fall 2011, 250 million tweets and 
billions of queries per day, all with an average query latency of 50 
milliseconds or less [20].)  For instance, the default Lucene40 
codec uses relatively simple compression algorithms that trade 
index size for speed; field normalization factors use encoding that 
fits a floating point weight in a single byte, with a significant loss 
of precision but with great savings in storage space; large data 
structures (such as term dictionary and posting lists) are often 
accompanied by skip lists that are cached in memory, while the 
main data is retrieved in chunks and not buffered in the process’ 
memory, relying instead on disk buffers of the operating system 
for efficient LRU caching. 
Lucene 2, 3 and Lucene 4 have seen a significant effort to employ 
engineering best practices across the code base.  At the center of 
these best practices is a test-driven development approach 
designed to insure correctness and performance.  For instance, 
Lucene has an extensive suite of tests (for example, as of 
7/1/2012, Lucene has 79% test coverage on 1 sample run at 
https://builds.apache.org/job/Lucene-trunk/clover/) and bench-
marking capabilities that are designed to push Lucene to its limits.  
These tests are all driven by a test framework that supports the de 
facto industry standard notion of unit tests, but also the emerging 
focus on randomization of tests.  The former approach is primarily 
used to test “normal” operation, while the latter, when run 
regularly (this happens many times throughout the day on 
Lucene’s continuous integration system), is designed to catch 
edge cases beyond the scope of developers.   

Since many things in Lucene are pluggable, randomly assembling 
these parts and then running the test suite uncovers many edge 
cases that are simply too cumbersome for developers to code up 
manually.  For instance, a given test run may randomize the 
Codec used, the query types, the Locale, the character encoding of 
documents, the amount of memory given to certain subsystems 
and much, much more.  The same test run again later (with a 
different random seed) would likely utilize a different 
combination of implementations.  Finally, Lucene also has a suite 
of tests for doing large scale indexing and searching tasks.  The 
results of these tests are tracked over time to provide better 
context for making decisions about incorporating new features or 
modifying existing implementations [24]. 



7. RETRIEVAL EVALUATION 
At the time of this writing, the authors are not aware of any 
TREC-style evaluations of Lucene 4 (which is not unexpected, as 
it isn’t officially released as of this writing), but Lucene has been 
used in the past by participants of TREC.   Moreover, due to 
copyright restrictions on the data used in many TREC-style 
retrieval evaluations, it is difficult for a widespread open source 
community like Lucene’s to effectively and openly evaluate itself 
using these approaches due to the fact that the community cannot 
reliably and openly obtain the content to reproduce the results.  
This is a somewhat subtle point in that it isn’t that we as a 
community don’t technically know how to run TREC-style 
evaluations (many have privately), but that we have decided not to 
take it on as a community due to the fact that there is no reliable 
way to distribute the content to anyone in the community who 
wishes to participate (e.g. who would sign and fill out the 
organizational agreement such as 
http://lemurproject.org/clueweb09/organization_agreement.cluew
eb09.worder.Jun28-12.pdf for the community?) and therefore it is 
not an open process on par with the community’s open 
development process.  For instance, assume contributor A has 
access to a paid TREC collection and makes an improvement to 
Lucene that improves precision in a statistically significant way 
and posts a patch.  How does contributor B, who doesn’t have 
access to the same content, reproduce the results and 
validate/refute the contribution?     See [28] for a deeper 
discussion of the issues involved.  Some in the community have 
tried to overcome this by starting the Open Relevance Project 
(http:lucene.apache.org/openrelevance) but this has yet to gain 
traction.  Thus, it is up to individuals within the community who 
work at institutions with access to the content to perform 
evaluations and share the results with the community.  Since most 
in the community are developers focused on implementation of 
search in applications, this does not happen publicly very often.  
The authors recognize this is a fairly large gap for Lucene in terms 
of IR research and is a gap these authors hope can be remedied by 
working more closely with the research community in the future.   

In the past, some individuals have taken on TREC-style 
evaluations.  In [17], a modified Lucene 2.3.0 was used in the 
1 Million Queries Track.  In [29], an unmodified Lucene 3.0, in 
combination with query expansion techniques, was used in the 
TREC 2011 Medical Track.  In [30], Lucene 1.9.1 was compared 
against a wide variety of open source implementations using out 
of the box defaults. The impact of Lucene’s boost and coordinate 
level match on tf / idf ranking is studied in [43]. Many researchers 
use Lucene as a baseline (e.g. [44]), a platform for 
experimentation or an example of implementation of standard IR 
algorithms.  For example, [45] used Lucene 2.4.0 in an “out of the 
box” configuration, although it is not clear to these authors what 
an out of the box Lucene configuration is, since the community 
doesn’t specify such a thing. 

8. FUTURE WORK 
While the nature of open source is such that one never knows 
exactly what will be worked on in the future (“patches welcome” 
is not just a slogan, but a way of development -- the community 
often jumps on promising ideas that save time or improve quality 
and these ideas often seemingly appear from nowhere.)  In 
general, however, the community focus at the time of this writing 
is on: 1) finalizing the 4.0 APIs and open issues for release, 2) 
additional inverted index compression algorithms (e.g. PFOR) 3) 
field-level updates (or at least updates for certain kinds of fields 
like doc-values and metadata fields) and 4) continued growth of 

higher order search functionality like more complex joins, 
grouping, faceting, auto-suggest and spatial search capabilities.  
Naturally, there is always work to be done in cleaning up and 
refactoring existing code as it becomes better understood.   

As important as the future of the code is to Lucene, so is the 
community that surrounds it.  Building and maintaining 
community is and always will be a vital component of Lucene, 
just as keeping up with the latest algorithms and data structures is 
to the codebase itself. 

9. CONCLUSIONS 
In this paper, we presented both a historical view of Lucene as 
well as details on the components that make Lucene one of the 
key pieces of modern, search-based applications in industry today.  
These components extend well beyond the code and include an 
“Always Be Testing” development approach along with a large, 
open community collectively working to better Lucene under the 
umbrella that is known as The Apache Software Foundation. 

At a deeper level, Lucene 4 marks yet another inflection point in 
the life of Lucene.  By overhauling the underpinnings of Lucene 
to be more flexible and pluggable as well as greatly improving the 
efficiency and performance, Lucene is well suited for continued 
commercial success as well as better positioned for experimental 
research work. 

10. ACKNOWLEDGMENTS 
The authors wish to thank all of the users and contributors over 
the years to the Apache Lucene project, with a special thanks to 
Doug Cutting, the original author of Lucene.  We also wish to 
extend thanks to all of the committers on the project, without 
which there would be no Apache Lucene: Andrzej Białecki, Bill 
Au, Michael Busch, Doron Cohen, Doug Cutting, James Dyer, 
Shai Erera, Erick Erickson, Otis Gospodnetić, Adrien Grand, 
Martijn van Groningen, Erik Hatcher, Mark Harwood, Chris 
Hostetter, Jan Høydahl, Grant Ingersoll, Mike McCandless, Ryan 
McKinley, Chris Male, Bernhard Messer, Mark Miller, Christian 
Moen, Robert Muir, Stanisław Osiński, Noble Paul, Steven Rowe, 
Uwe Schindler, Shalin Shekhar Mangar, Yonik Seeley, Koji 
Sekiguchi, Sami Siren, David Smiley, Tommaso Teofili, Andi 
Vajda, Dawid Weiss, Simon Willnauer, Stefan Matheis, Josh 
Bloch, Peter Carlson, Tal Dayan, Bertrand Delacretaz, Scott 
Ganyo, Brian Goetz, Christoph Goller, Eugene Gluzberg, 
Wolfgang Hoschek, Cory Hubert, Ted Husted Tim Jones, Mike 
Klaas, Dave Kor, Daniel Naber, Patrick O'Leary, Andrew C. 
Oliver, Dmitry Serebrennikov, Jon Stevens, Matt Tucker, Karl 
Wettin. 

11. REFERENCES 
[1] The Apache Software Foundation. The Apache Software 

Foundation. 2012. Accessed 6/23/2012. http://www.apache.org.  

[2] Apache License, Version 2.0.  The Apache Software Foundation.  
January 2004.  Accessed 6/23/2012. 
http://www.apache.org/licenses/LICENSE-2.0  

[3] How it Works.  The Apache Software Foundation. Circa 2012.  
Accessed 6/24/2012. http://www.apache.org/foundation/how-it-
works.html 

[4] Interview with Walter Underwood of Netflix. Lucid Imagination.  
May, 2009.  Accessed 6/23/2012. 
http://www.lucidimagination.com/devzone/videos-
podcasts/podcasts/interview-walter-underwood-netflix 

[5] Instagram Engineering Blog. Instagram. January 2012. Accessed 
6/23/2012. http://instagram-



engineering.tumblr.com/post/13649370142/what-powers-instagram-
hundreds-of-instances-dozens-of 

[6] Lucene Powered By Wiki.  The Apache Software Foundation.  
Various.  Accessed 6/23/2012. http://wiki.apache.org/lucene-
java/PoweredBy/ 

[7] Apache Solr.  The Apache Software Foundation.  Accessed 
6/23/2012.  http://lucene.apache.org/solr.  

[8] Interview with Doug Cutting. Lucid Imagination. circa 2008. 
Accessed 6/23/2012. 
http://www.lucidimagination.com/devzone/videos-
podcasts/podcasts/interview-doug-cutting 

[9] Apache Subversion Initial Lucene Revision.  The Apache Software 
Foundation. 9/18/2001.  Accessed 6/23/2012. 
http://svn.apache.org/viewvc?view=revision&revision=149570 

[10] Apache Subversion Lucene Source Code Repository. The Apache 
Software Foundation.  various.  Accessed 6/23/2012. 
http://svn.apache.org/repos/asf/lucene/java/tags/ 

[11] Apache Subversion Lucene Source Code Repository. The Apache 
Software Foundation.  various.  Accessed 6/23/2012. 
http://svn.apache.org/repos/asf/lucene/dev/tags/ 

[12] D. Cutting, J. Pedersen, and P. K. Halvorsen, “An object-oriented 
architecture for text retrieval,” In Conference Proceedings of 
RIAO'91, Intelligent Text and Image Handling, 1991. 
 

[13] Levenshtein VI (1966)."Binary codes capable of correcting 
deletions, insertions, and reversals". Soviet Physics Doklady 10: 
707–10. 

[14] Lucene 1.2 Source Code.  The Apache Software Foundation. Circa 
2001.  Accessed 6/23/2012.  
http://svn.apache.org/repos/asf/lucene/java/tags/lucene_1_2_final/ 

[15] E. Hatcher, O. Gospodnetic, and M. McCandless.  Lucene in Action. 
Manning, 2nd revised edition. edition, 8 2010. 

[16] J. Pérez-Iglesias, J. R. Pérez-Agüera, V. Fresno, and Y. Z. Feinstein, 
“Integrating the Probabilistic Models BM25/BM25F into Lucene,” 
arXiv.org, vol. cs.IR. 26-Nov.-2009. 

[17] D. Cohen, E. Amitay, and D. Carmel, “Lucene and Juru at Trec 
2007: 1-million queries track,” Proc. of the 16th Text REtrieval 
Conference, 2007. 

[18] A Language Modeling Extension for Lucene. Information and 
Language Processing Systems.  Accessed 6/30/2012.  
http://ilps.science.uva.nl/resources/lm-lucene 

[19] D. Cutting and J. Pedersen. 1989. Optimization for dynamic inverted 
index maintenance. In Proceedings of the 13th annual international 
ACM SIGIR conference on Research and development in 
information retrieval (SIGIR '90), Jean-Luc Vidick (Ed.). ACM, 
New York, NY, USA, 405-411. 

[20] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin, 
“Earlybird: Real-Time Search at Twitter.” 

[21] S. Robertson, S. Walker, and S. Jones, “Okapi at TREC-3,” NIST 
SPECIAL 1995. 

[22] Stephane Clinchant and Eric Gaussier. 2010. Information-based 
models for ad hoc IR. In Proceeding of the 33rd international ACM 
SIGIR conference on Research and development in information 
retrieval (SIGIR '10). ACM, New York, NY, USA, 234-241 

[23] G. Amati and C. J. Van Rijsbergen, “Probabilistic models of 
information retrieval based on measuring the divergence from 
randomness,” ACM Transactions on Information Systems (TOIS), 
vol. 20, no. 4, pp. 357–389, 2002. 

[24] Lucene Trunk Source Code. Revision 1353303.  The Apache 
Software Foundation. 2012.  Accessed 6/24/2012. 
http://svn.apache.org/repos/asf/lucene/dev/trunk/lucene/ 

[25] C. Zhai and J. Lafferty, “A study of smoothing methods for language 
models applied to ad hoc information retrieval,” Proceedings of the 
24th annual international ACM SIGIR conference on Research and 
development in information retrieval, pp. 334–342, 2001. 

[26] Fabrizio Silvestri and Rossano Venturini. 2010. VSEncoding: 
efficient coding and fast decoding of integer lists via dynamic 
programming. In Proceedings of the 19th ACM international 
conference on Information and knowledge management (CIKM '10). 

[27] Douglass R. Cutting and Jan O. Pedersen, Space Optimizations for 
Total Ranking, Proceedings of RAIO'97, Computer-Assisted 
Information Searching on Internet, Quebec, Canada, June 1997, pp. 
401-412. 

[28] TREC Collection, NIST and Lucene.  Apache Lucene Public Mail 
Archives.  Aug. 2007.  Accessed 6/30/2012. 

[29] B. King, L. Wang, I. Provalov, and J. Zhou, “Cengage Learning at 
TREC 2011 Medical Track,” Proceedings of TREC, 2011. 

[30] C. Middleton and R. Baeza-Yates, “A comparison of open source 
search engines,” 2007. 

[31] C. J. van Rijsbergen. Information Retrieval, 2nd edition. 1979, 
Butterworths 

[32] The Xapian Project.  Accessed 7/2/2012. http://www.xapian.org 

[33] The Lemur Project.  CIIR.  Accessed 7/2/2012. 
http://www.lemurproject.org 

[34] Terrier IR Platform.  Univ. of Glasgow.  Accessed 7/2/2012. 
http://www.terrier.org 

[35] P. Boldi, “MG4J at TREC 2005,” … Text REtrieval Conference 
(TREC 2005). 2005. 

[36] V. Anh, A. Moffat. Structured index organizations for high-
throughput text querying. String Processing and Information 
Retrieval, 304–315, 2006. 

[37] G. Salton, E. A. Fox, and H. Wu. Extended Boolean information 
retrieval. Commun. ACM 26, 11 (November 1983), 1022-1036 

[38] S. Mihov , D. Maurel. Direct Construction of Minimal Acyclic 
Subsequential Transducers. 2001. 

[39] J. Daciuk, D. Weiss. Smaller Representation of Finite State 
Automata. In: Lecture Notes in Computer Science, Implementation 
and Application of Automata, Proceedings of the 16th International 
Conference on Implementation and Application of Automata, 
CIAA'2011, vol. 6807,     2011, pp. 118—192. 

[40] Yves Rasolofo and Jacques Savoy. Term proximity scoring for 
keyword-based retrieval systems. In Proceedings of the 25th 
European conference on IR research (ECIR'03), Fabrizio Sebastiani 
(Ed.). Springer-Verlag, Berlin, Heidelberg, 207-218, 2003. 

[41] S. Büttcher, C. Clarke, B. Lushman, B. Term proximity scoring for 
ad-hoc retrieval on very large text collections. Proceedings of the 
29th annual international ACM SIGIR conference on Research and 
development in information retrieval, 621–622, 2006. 

[42] A. Moffat, J. Zobel. Fast Ranking in Limited Space. In Proceedings 
of the Tenth International Conference on Data Engineering. IEEE 
Computer Society, Washington, DC, USA, 428-437, 1994. 

[43] L. Dolamic, J. Savoy. Variations autour de tf idf et du moteur 
Lucene. In: Publié dans les 1 Actes 9e journées Analyse statistique 
des Données Textuelles JADT 2008, 1047-1058, 2008 

[44] X. Xu, S. Pan, J. Wan. Compression of Inverted Index for 
Comprehensive Performance Evaluation in Lucene. 2010 Third 
International Joint Conference on Computational Science and 
Optimization (CSO), vol. 1, 382–386, 2010 

[45] T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel, “Has adhoc 
retrieval improved since 1994?,” presented at the SIGIR '09: 
Proceedings of the 32nd international ACM SIGIR conference on 
Research and development in information retrieval, 2009.


