
Apache Lucene 4

Andrzej Białecki, Robert Muir, Grant Ingersoll
Lucid Imagination

{andrzej.bialecki, robert.muir, grant.ingersoll}@lucidimagination.com

ABSTRACT
Apache Lucene is a modern, open source search library designed
to provide both relevant results as well as high performance.
Furthermore, Lucene has undergone significant change over the
years, starting as a one-person project to one of the leading search
solutions available. Lucene is used in a vast range of applications
from mobile devices and desktops through Internet scale
solutions. The evolution of Lucene has been quite dramatic at
times, none more so than in the current release of Lucene 4.0.
This paper presents both an overview of Lucene’s features as well
as details on its community development model, architecture and
implementation, including coverage of its indexing and scoring
capabilities.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Information Retrieval, Open Source, Apache Lucene.

1. INTRODUCTION
Apache Lucene is an open source Java-based search library
providing Application Programming Interfaces for performing
common search and search related tasks like indexing, querying,
highlighting, language analysis and many others. Lucene is
written and maintained by a group of contributors and committers
of the Apache Software Foundation (ASF) [1] and is licensed
under the Apache Software License v2 [2]. It is built by a loosely
knit community of “volunteers” (as the ASF views them, most
contributors are paid to work on Lucene by their respective
employers) following a set of principles collectively known as the
“Apache Way” [3].

Today, Lucene enjoys widespread adoption, powering search on
many of today’s most popular websites, applications and devices,
such as Twitter, Netflix and Instagram [20, 4, 5] as well as many

other search-based applications [6]. Lucene has also spawned
several search-based services such as Apache Solr [7] that provide
extensions, configuration and infrastructure around Lucene as
well as native bindings for programming languages other than
Java. As of this writing, Lucene 4.0 is on the verge of being
officially released (it likely will be released by the time of
publication) and represents a significant milestone in the
development of Lucene due to a number of new features and
efficiency improvements as compared to previous versions of
Lucene. This paper’s focus will primarily be on Lucene 4.0.

The main capabilities of Lucene are centered on the creation,
maintenance and accessibility of the Lucene inverted index [31].
After reviewing Lucene’s background in section 2 and related
work in section 3, the remainder of this paper will focus on the
features, architecture and open source development methodology
used in building Lucene 4.0. In Section 4 we’ll provide a broad
overview of Lucene’s features. In section 5, we’ll examine
Lucene’s architecture and functionality in greater detail by
looking at how Lucene implements its indexing and querying
capabilities. Section 6 will detail Lucene’s open source
development model and how it directly contributes to the success
of the project. Section 7 will provide a meta-analysis of Lucene’s
performance in various search evaluations such as TREC, while
section 8 and 9 will round out the paper with a look at the future
of Lucene and the conclusions that can be drawn from this paper,
the project and the broader Lucene community.

2. BACKGROUND
Originally started in 1997 by Doug Cutting as a means to learning
Java [8] and subsequently donated to The Apache Software
Foundation (ASF) in 2001 [9], Lucene has had 32 official releases
encompassing major, minor and patch releases [10, 11]. The most
current of those releases, at the time of writing is Lucene 3.6.0.

From its earliest days, Lucene has implemented a modified vector
space model that supports incremental modifications to the index
[12, 19, 37]. For querying, Lucene has developed extensively
from the first official ASF release of 1.2. However even from the
1.2 release, Lucene supported a variety of query types, including:
fielded term with boosts, wildcards, fuzzy (using Levenshtein
Distance [13]), proximity searches and boolean operators (AND,
OR, NOT) [14]. Lucene 3.6.0 continues to support all of these
queries and the many more that have been added throughout the
lifespan of the project, including support for regular expressions,
complex phrases, spatial distances and arbitrary scoring functions
based on the values in a field (e.g. using a timestamp or a price as
a scoring factor) [10]. For more information on these features and
Lucene 3 in general, see [15].

Three years in the making, Lucene 4.0 builds on the work of a
number of previous systems and ideas, not just Lucene itself.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR 2012 Workshop on Open Source Information Retrieval.
August 16, 2012, Portland, OR USA.

Lucene incorporates a number of new models for calculating
similarity, which will be described later. Others have also
modified Lucene over the years as well: [16] modified Lucene to
add BM25 and BM25F; [17] added “sweet spot similarity” and
ILPS at the U. of Amsterdam has incorporated language modeling
into Lucene [18]. Lucene also includes a number of new
abstractions for logically separating out the index format and
related data structures (Lucene calls them Codecs and they are
similar in theory to Xapian’s Backends [32]) from the storage
layer - see the section Codec API for more details.

3. RELATED WORK
There are numerous open source search engines available today
[30], with different feature sets, performance characteristics, and
software licensing models. Xapian [32] is a portable IR library
written in the C++ programming language that supports
probabilistic retrieval models. The Lemur Project [33] is a toolkit
for language modeling and information retrieval. The Terrier IR
platform [34] is an open-source toolkit for research and
experimentation that supports a large variety of IR models.
Managing Gigabytes For Java (MG4J) [35] is a free full-text
search engine designed for large document collections.

4. LUCENE 4 FEATURES
Lucene 4.0 consists of a number of features that can be broken
down into four main categories: analysis of incoming content and
queries, indexing and storage, searching, and ancillary modules
(everything else). The first three items contribute to what is
commonly referred to as the core of Lucene, while the last
consists of code libraries that have proven to be useful in solving
search-related problems (e.g. result highlighting.)

4.1 Language Analysis
The analysis capabilities in Lucene are responsible for taking in
content in the form of documents to be indexed or queries to be
searched and converting them into an appropriate internal
representation that can then be used as needed. At indexing time,
analysis creates tokens that are ultimately inserted into Lucene’s
inverted index, while at query time, tokens are created to help
form appropriate query representations. The analysis process
consists of three tasks which are chained together to operate on
incoming content: 1) optional character filtering and
normalization (e.g. removing diacritics), 2) tokenization, and 3)
token filtering (e.g. stemming, lemmatization, stopword removal,
n-gram creation). Analysis is described in greater detail in the
section on Lucene’s document model below.

4.2 Indexing and Storage
Lucene’s indexing and storage layers consist of the following

primary features, many of which will be discussed in greater
detail in the Architecture and Implementation section:

• Indexing of user defined documents, where documents
can consist of one or more fields containing the content
to be processed and each field may or may not be
analyzed using the analysis features described earlier.

• Storage of user defined documents.

• Lock-free indexing [20]

• Near Real Time indexing enabling documents to be
searchable as soon as they are done indexing

• Segmented indexing with merging and pluggable merge
policies [19]

• Abstractions to allow for different strategies for I/O,
storage and postings list data structures [36]

• Transactional support for additions and rollbacks

• Support for a variety of term, document and corpus
level statistics enabling a variety of scoring models [24].

4.3 Querying
On the search side, Lucene supports a variety of query options,
along with the ability to filter, page and sort results as well as
perform pseudo relevance feedback. For querying, Lucene
provides over 50 different kinds of query representations, as well
as several query parsers and a query parsing framework to assist
developers in writing their own query parser [24]. More
information on query capabilities will be provided later.

Additionally, Lucene 4.0 now supports a completely pluggable
scoring model [24] system that can be overridden by developers.
It also ships with several pre-defined models such as Lucene’s
traditional vector-space scoring model, Okapi BM25 [21],
Language Modeling [25], Information Based [22] and Divergence
from Randomness [23].

4.4 Ancillary Features
Lucene’s ancillary modules contain a variety of capabilities
commonly used in building search-based applications. These
libraries consist of code that is not seen as critical to the indexing
and searching process for all people, but nevertheless useful for
many applications. They are packaged separately from the core
Lucene library, but are released at the same time as the core and
share the core’s version number. There are currently 13 different
modules and they include code for performing: result highlighting
(snippet generation), faceting, spatial search, document grouping
by key (e.g. group all documents with the same base URL
together), document routing (via an optimized, in-memory, single
document index), point-based spatial search and auto-suggest.

5. ARCHITECTURE AND
IMPLEMENTATION
Lucene’s architecture and implementation has evolved and
improved significantly over its lifetime, with much of the work
focused around usability and performance, with the work often
falling into the areas of memory efficiencies and the removal of
synchronizations. In this section, we’ll detail some of the
commonly used foundation classes of Lucene and then look at
how indexing and searching are built on top of these. To get
started, Figure 1 illustrates the high-level architecture of Lucene
core.

5.1 Foundations
There are two main foundations of Lucene 4: text analysis and our
use of finite state automata, both of which will be discussed in the
subsections below.

5.1.1 Text Analysis
The text analysis chain produces a stream of tokens from the input
data in a field (Figure 3). Tokens in the analysis chain are
represented as a collection of “attributes”. In addition to the
expected main “term” attribute that contains the token value there

can be many other attributes associated with a token, such as
token position, starting and ending offsets, token type, arbitrary
payload data (a byte array to be stored in the index at the current
position), integer flags, and other custom application-defined
attributes (e.g. part-of-speech tags).

Analysis chains consist of character filters (useful for stripping
diacritics, for instance), tokenizers (which are the sources of token
streams) and series of token filters that modify the original token
stream. Custom token attributes can be used for passing bits of
per-token information between the elements of the chain.

Lucene includes a total of five character filtering
implementations, 18 tokenization strategies and 97 token filtering
implementations and covers 32 different languages [24]. These
token streams performing specific functions such as tokenization
by patterns, rules and dictionaries (e.g. whitespace, regex, Chinese
/ Japanese / Korean, ICU), specialized token filters for efficient
indexing of numeric values and dates (to support trie-based
numerical range searching), language-specific stemming and stop
word removal, creation of character or word-level n-grams,
tagging (UIMA), etc. Using these existing building blocks, or
custom ones, it’s possible to express very complex text analysis
pipelines.

5.1.2 Finite State Automata
Lucene 4.0 requires significantly less main memory than previous
releases. The in-memory portion of the inverted index is
implemented with a new finite state transducer (FST) package.
Lucene’s FST package supports linear time construction of the
minimal automaton [38], FST compression [39], reverse lookups,
and weighted automata. Additionally, the API supports pluggable
output algebras. Synonym processing, Japanese text analysis, spell
correction, auto-suggest are now all based on Lucene’s automata
package, with additional improvements planned for future
releases.

5.2 Indexing
 Lucene uses the well-known inverted index representation, with
additional functionality for keeping adjacent non-inverted data on
a per-document basis. Both in-flight and persistent data uses
variety of encoding schemas that affect the size of the index data
and the cost of the data compression. Lucene uses pluggable
mechanisms for data coding (see the section on Codec API below)
and for the actual storage of index data (Directory API).
Incremental updates are supported and stored in index extents

(referred to as “segments”) that are periodically merged into
larger segments to minimize the total number of index parts [19].

5.2.1 Document Model
Documents are modeled in Lucene as a flat ordered list of fields
with content. Fields have name, content data, float weight (used
later for scoring), and other attributes, depending on their type,
which together determine how the content is processed and
represented in the index. There can be multiple fields with the
same name in a document, in which case they will be processed
sequentially. Documents are not required to have a unique
identifier (though they often carry a field with this role for
application-level unique key lookup) - in the process of indexing
documents are assigned internal integer identifiers.

5.2.2 Field Types
There are two broad categories of fields in Lucene documents -
those that carry content to be inverted (indexed fields) and those
with content to be stored as-is (stored fields). Fields may belong
to either or both categories (e.g. with content both to be stored and
inverted). Both indexed and stored fields can be submitted for
storing / indexing, but only stored fields can be retrieved - the
inverted data can be accessed and traversed using a specialized
API.
Indexed fields can be provided in plain text, in which case it will
be first passed through text analysis pipeline, or in its final form
of a sequence of tokens with attributes (so called “token stream”).
Token streams are then inverted and added to in-memory
segments, which are periodically flushed and merged. Depending
on the field options, various token attributes (such as positions,
starting / ending offsets and per-position payloads) are also stored
with the inverted data. It’s possible e.g. to omit positional
information while still storing the in-document term frequencies,
on a per-field basis [36].

A variant of an indexed field is a field where the creation and
storage of term frequency vectors was requested. In this case the
token stream is used also for building a small inverted index
consisting of data from the current field only, and this inverted
data is then stored on a per-document and per-field basis. Term
frequency vectors are particularly useful when performing
document highlighting, relevance feedback or when generating
search result snippets (region of text that best matches the query
terms).
Stored fields are typically used for storing auxiliary per-document
data that is not searchable but would be cumbersome to obtain
otherwise (e.g. it would require retrieval from a separate system).
This data is stored as byte arrays, but can be manipulated through
a more convenient API that presents it as UTF-8 strings, numbers,

Figure 1 Lucene's Architecture

Figure 2 Structure of a Lucene segment.

arrays etc., or optionally it can be stored using strongly typed API
(so called “doc values”) that can use a more optimized storage
format. This kind of strongly typed storage is used for example to
store per-document and per-field weights (so called “norms”, as
they typically correspond to field length normalization factor that
affects scoring).

5.2.3 Indexing Chain
The resulting token stream is finally processed by the indexing
chain and the supported attributes (term value, position, offsets
and payload data) are added to the respective posting lists for each
term (Figure 3). Term values don’t have to be UTF-8 strings as in
previous versions of Lucene - version 4.0 fully supports arbitrary
byte array values as terms, and can use custom comparators to
define the sorting order of such terms.

Also at this stage documents are assigned their internal document

identifiers, which are small sequential integers (for efficient delta
compression). These identifiers are ephemeral - they are used for
identifying document data within a particular segment, so they
naturally change after two or more segments are merged (during
index compaction).

5.3 Incremental Index Updates
Indexes can be updated incrementally on-line, simultaneously
with searching, by adding new documents and/or deleting existing
ones (sub-document updates are a work in progress). Index
extents are a common way to implement incremental index
updates that don’t require modifying the existing parts of the
index [19].
When new documents are submitted for indexing, their fields
undergo the process described in the previous section, and the
resulting inverted and non-inverted data is accumulated in new in-
memory index extents called “segments” (Figure 2), using a
compact in-memory representation (a variant of Codec - see
below). Periodically these in-memory segments are flushed to a
persistent storage (using the Codec and Directory abstractions),
whenever they reach a configurable threshold - for example, the
total number of documents, or the size in bytes of the segment.

5.3.1 The IndexWriter Class
The IndexWriter is a high-level class responsible for processing
index updates (additions and deletions), recording them in new
segments and creating new commit points, and occasionally
triggering the index compaction (segment merging). It uses a pool
of DocumentWriter-s that create new in-memory segments.

As new documents are being added and in-memory segments are
being flushed to storage, periodically an index compaction
(merging) is executed in the background that reduces the total
number of segments that comprise the whole index.

Document deletions are expressed as queries that select (using
boolean match) the documents to be deleted. Deletions are also
accumulated, applied to the in-memory segments before flushing
(while they are still mutable) and also recorded in a commit point
so that they can be resolved when reading the already flushed
immutable segments.

Each flush operation or index compaction creates a new commit
point, recorded in a global index structure using a two-phase
commit. The commit point is a list of segments and deletions
comprising the whole index at the point in time when the commit
operation was successfully completed. Segment data that is being
flushed from in-memory segments is encoded using the
configured Codec implementation (see the section below).

In Lucene 3.x and earlier some segment data was mutable (for
example, the parts containing deletions or field normalization
weights), which negatively affected the concurrency of writes and
reads - to apply any modifications the index had to be locked and
it was not possible to open the index for reading until the update
operation completed and the lock was released.
In Lucene 4.0 the segments are fully immutable (write-once), and
any changes are expressed either as new segments or new lists of
deletions, both of which create new commit points, and the
updated view of the latest version of the index becomes visible
when a commit point is recorded using a two-phase commit. This
enables lock-free reading operations concurrently with updates,
and point-in-time travel by opening the index for reading using
some existing past commit point.

5.3.2 The IndexReader Class
The IndexReader provides high-level methods to retrieve stored
fields, term vectors and to traverse the inverted index data. Behind
the scenes it uses the Codec API to retrieve and decode the index
data (Figure 1).

The IndexReader represents the view of an index at a specific
point in time. Typically a user obtains an IndexReader from either
a commit point (where all data has been written to disk), or
directly from IndexWriter (a “near-realtime” snapshot that
includes both the flushed and the in-memory segments).

As mentioned in the previous section, segments are immutable so
the deletions don’t actually remove data from existing segments.
Instead the delete operations are resolved when existing segments
are open, so that the deletions are represented as a bitset of live
(not deleted) documents. This bitset is then used when
enumerating postings and stored fields and during search to hide
deleted documents. Global index statistics are not recalculated, so
they are slightly wrong (they include the term statistics of postings
that belong to deleted documents). For performance reasons the
data of deleted documents is actually removed only during
segment merging, and then also the global statistics are
recalculated.

The IndexReader API follows the composite pattern: an
IndexReader representing a specific commit point is actually a list
of sub-Readers for each segment. Composed IndexReaders at
different points in time share underlying subreaders with each
other when possible: this allows for efficient representation of
multiple point-in-time views. An extreme example of this is the

Figure 3 Indexing Process

Twitter search engine, where each search operation obtains a new
IndexReader [20].

5.4 Codec API
While Lucene 3.x used a few predefined data coding algorithms (a
combination of delta and variable-length byte coding), in Lucene
4.0 all parts of the code that dealt with coding and compression of
data have been separated and grouped into a Codec API.

This major re-design of Lucene architecture has opened up the
library for many improvements, customizations and for
experimentation with recent advances in inverted index
compression algorithms. The Codec API allows for complete
customization of how index data is encoded and written out to the
underlying storage: the inverted and non-inverted parts, how it’s
decoded for reading and how segment data is merged. The
following section explains in more detail how inverted data is
represented using this API.

5.4.1 A 4-D View of the Inverted Index
The Codec API presents inverted index data as a logical four-
dimensional table that can be traversed using enumerators. The
dimensions are: field, term, document, and position - that is, an
imaginary cursor can be advanced along rows and columns of this
table in each dimension, and it supports both “next item” and
“seek to item” operations, as well as retrieving row and cell data
at the current position. For example, given a cursor at field f1 and
term t1 the cursor can be advanced along this posting list to the
data for document d1, where the in-document frequency for this
term (TF) can be retrieved, and then positional data can be iterated
to retrieve consecutive positions, offsets and payload data at each
position within this document.

This level of abstraction is sufficient to not only support many
types of query evaluation strategies, but to also clearly separate
how the underlying data structures should be organized and
encoded and to encapsulate this concern in Codec
implementations.

5.4.2 Lucene 4.0 Codecs
The default codec implementation (aptly named “Lucene40”) uses
a combination of well-known compression algorithms and
strategies selected to provide a good tradeoff between index size
(and related costs of I/O seeks) and coding costs. Byte-aligned
coding is preferred for its decompression speed - for example,
posting lists data uses variable-byte coding of delta values, with
multi-level skip lists, using the natural ordering of document
identifiers, and interleaving of document ID-s and position data
[36]. For frequently occurring very short lists (according to the
Zipf’s law) the codec switches to using the “pulsing” strategy that
inlines postings with the term dictionary [19]. The term dictionary
is encoded using a “block tree” schema that uses shared prefix
deltas per block of terms (fixed-size or variable-size) and skip
lists. The non-inverted data is coded using various strategies, for
example per-document strongly typed values are encoded using
fixed-length bit-aligned compression (similar to Frame-of-
Reference coding), while the regular stored field data uses no
compression at all (applications may of course compress
individual values before storing).

The Lucene40 codec offers, in practice, a good balance between
high performance indexing and fast execution of queries. Since
the Codec API offers a clear separation between the functionality
of the inverted index and the details of its data formats, it’s very
easy in Lucene 4.0 to customize these formats if the default codec
is not sufficient. The Lucene community is already working on

several modern codecs, including PForDelta, Simple9/16/64 (both
likely to be included in Lucene 4.0) and VSEncoding [26], and
experimenting with other representations for the term dictionary
(e.g. using Finite State Transducers).

The Codec API opens up many possibilities for runtime
manipulation of postings during writing or reading (e.g. online
pruning and sharding, adding Bloom filters for fail-fast lookups
etc.), or to accommodate specific limitations of the underlying
storage (e.g. Appending codec that can work with append-only
filesystems such as Hadoop DFS).

5.4.3 Directory API
Finally, the physical I/O access is abstracted using the Directory
API that offers a very simple file system-like view of persistent
storage. The Lucene Directory is basically a flat list of “files”.
Files are write-once, and abstractions are provided for sequential
and random access for writing and reading of files.

This abstraction is general enough and limited enough that
implementations exist both using java.io.File, NIO buffers, in
memory, distributed file systems (e.g. Amazon S3 or Hadoop
HDFS), NoSQL key-value stores and even traditional SQL
databases.

5.5 SEARCHING
Lucene’s primary searching concerns can be broken down into a
few key areas, which will be discussed in the following
subsections: Lucene’s query model, query evaluation, scoring and
common search extensions. We’ll begin by looking at how
Lucene models queries.

5.5.1 Query Model and Types
Lucene does not enforce a particular query language: instead it
uses Query objects to perform searches. Several Queries are
provided as building blocks to express complex queries, and
developers can construct their own programmatically or via a
Query Parser.

Query types provided in Lucene 4.0 include: term queries that
evaluate a single term in a specific field; boolean queries
(supporting AND, OR and NOT) where clauses can be any other
Query; proximity queries (strict phrase, sloppy phrase that allows
for up to N intervening terms) [40, 41]; position-based queries
(called “spans” in Lucene parlance) that allow to express more
complex rules for proximity and relative positions of terms;
wildcard, fuzzy and regular expression queries that use automata
for evaluating matching terms; disjunction-max query that assigns
scores based on the best match for a document across several
fields; payload query that processes per-position payload data, etc.
Lucene also supports the incorporation of field values into
scoring. Named “function queries”, these queries can be used to
add useful scoring factors like time and distance into the scoring
model.

This large collection of predefined queries allows developers to
express complex criteria for matching and scoring of documents,
in a well-structured tree of query clauses.

Typically a search is parsed by a Query Parser into a Query tree,
but this is not mandatory: queries can also be generated and
combined programmatically. Lucene ships with a number of
different query parsers out of the box. Some are based on JavaCC
grammars while others are XML based. Details on these query
parsers and the framework is beyond the scope of this paper.

5.5.2 Query Evaluation
When a Query is executed, each inverted index segment is
processed sequentially for efficiency: it is not necessary to operate
on a merged view of the postings lists. For each index segment,
the Query generates a Scorer: essentially an enumerator over the
matching documents with an additional score() method.

Scorers typically score documents with a document-at-a-time
(DAAT) strategy, although the commonly used BooleanScorer
sometimes uses a TAAT (term-at-a-time)-like strategy when the
number of terms is low [27].

Scorers that are “leaf” nodes in the Query tree typically compute
the score by passing raw index statistics (such as term frequency)
to the Similarity, which is a configurable policy for term ranking.
Scorers higher-up in the tree usually operate on sub-scorers, e.g. a
Disjunction scorer might compute the sum of its children’s scores.
Finally, a Collector is responsible for actually consuming these
Scorers and doing something with the results: for example
populating a priority queue of the top-N documents [42].
Developers can also implement custom Collectors for advanced
use cases such as early termination of queries, faceting, and
grouping of similar results.

5.5.3 Similarity
The Similarity class implements a policy for scoring terms and
query clauses, taking into account term and global index statistics
as well as specifics of a query (e.g. distance between terms of a
phrase, number of matching terms in a multi-term query,
Levenshtein edit distance of fuzzy terms, etc). Lucene 4 now
maintains several per-segment statistics (e.g. total term frequency,
unique term count, total document frequency of all terms, etc) to
support additional scoring models.
As a part of the indexing chain this class is responsible for
calculating the field normalization factors (weights) that usually
depend on the field length and arbitrary user-specified field
boosts. However, the main role of this class is to specify the
details of query scoring during query evaluation.

As mentioned earlier, Lucene 4 provides several Similarity
implementations that offer well-known scoring models: TF/IDF
with several different normalizations, BM25, Information-based,
Divergence from Randomness, and Language Modeling.

5.5.4 Common Search Extensions
Keyword search is only a part of query execution for many
modern search systems. Lucene provides extended query
processing capabilities to support easier navigation of search
results. The faceting module allows for browsing/drilldown
capabilities, which is common in many e-commerce applications.
Result grouping supports folding related documents (such as those
appearing on the same website) into a single combined result.
Additional search modules provide support for nested documents,
query expansion, and geospatial search.

6. Open Source Engineering
Lucene’s development is a collaboration of a broad set of
contributors along with a core set of committers who have
permission to actually change the source code hosted at the ASF.
At the heart of this approach is a meritocratic model whereby
permissions to the code and documentation are granted based on
contributions (both code-based and non-code based) to the
community over a sustained period of time and after being voted
in by Lucene’s Project Management Committee (PMC) in
recognition of these contributions [3].

Development is undertaken as a loose federation of programmers
coordinating development through the use of mailing lists, issue
tracking software, IRC channels and the occasional face-to-face
meeting. While all committers may veto someone else’s changes,
these rarely happen in practice due to coordination via the
communication mechanisms mentioned. Project planning is very
lightweight and is almost always coordinated by patches to the
code that demonstrate the desired feature to some level more than
abstract discussions about potential implementations. Releases
are the coordinated effort of a community-selected (someone
usually volunteers) release manager and a grouping of other
people who validate release candidates and vote to release the
necessary libraries. Lucene developers also strive to make sure
that backwards compatibility (breakages, when known, are
explicitly documented) is maintained between minor versions and
that all major version upgrades are able to consume the index of
the last minor version of the previous release, thereby reducing
the cost of upgrades.

Lucene developers are often faced with the need to make tradeoffs
between speed, index size and memory consumption, since
Lucene is used in many demanding environments (Twitter, for
example, processes, as of Fall 2011, 250 million tweets and
billions of queries per day, all with an average query latency of 50
milliseconds or less [20].) For instance, the default Lucene40
codec uses relatively simple compression algorithms that trade
index size for speed; field normalization factors use encoding that
fits a floating point weight in a single byte, with a significant loss
of precision but with great savings in storage space; large data
structures (such as term dictionary and posting lists) are often
accompanied by skip lists that are cached in memory, while the
main data is retrieved in chunks and not buffered in the process’
memory, relying instead on disk buffers of the operating system
for efficient LRU caching.
Lucene 2, 3 and Lucene 4 have seen a significant effort to employ
engineering best practices across the code base. At the center of
these best practices is a test-driven development approach
designed to insure correctness and performance. For instance,
Lucene has an extensive suite of tests (for example, as of
7/1/2012, Lucene has 79% test coverage on 1 sample run at
https://builds.apache.org/job/Lucene-trunk/clover/) and bench-
marking capabilities that are designed to push Lucene to its limits.
These tests are all driven by a test framework that supports the de
facto industry standard notion of unit tests, but also the emerging
focus on randomization of tests. The former approach is primarily
used to test “normal” operation, while the latter, when run
regularly (this happens many times throughout the day on
Lucene’s continuous integration system), is designed to catch
edge cases beyond the scope of developers.

Since many things in Lucene are pluggable, randomly assembling
these parts and then running the test suite uncovers many edge
cases that are simply too cumbersome for developers to code up
manually. For instance, a given test run may randomize the
Codec used, the query types, the Locale, the character encoding of
documents, the amount of memory given to certain subsystems
and much, much more. The same test run again later (with a
different random seed) would likely utilize a different
combination of implementations. Finally, Lucene also has a suite
of tests for doing large scale indexing and searching tasks. The
results of these tests are tracked over time to provide better
context for making decisions about incorporating new features or
modifying existing implementations [24].

7. RETRIEVAL EVALUATION
At the time of this writing, the authors are not aware of any
TREC-style evaluations of Lucene 4 (which is not unexpected, as
it isn’t officially released as of this writing), but Lucene has been
used in the past by participants of TREC. Moreover, due to
copyright restrictions on the data used in many TREC-style
retrieval evaluations, it is difficult for a widespread open source
community like Lucene’s to effectively and openly evaluate itself
using these approaches due to the fact that the community cannot
reliably and openly obtain the content to reproduce the results.
This is a somewhat subtle point in that it isn’t that we as a
community don’t technically know how to run TREC-style
evaluations (many have privately), but that we have decided not to
take it on as a community due to the fact that there is no reliable
way to distribute the content to anyone in the community who
wishes to participate (e.g. who would sign and fill out the
organizational agreement such as
http://lemurproject.org/clueweb09/organization_agreement.cluew
eb09.worder.Jun28-12.pdf for the community?) and therefore it is
not an open process on par with the community’s open
development process. For instance, assume contributor A has
access to a paid TREC collection and makes an improvement to
Lucene that improves precision in a statistically significant way
and posts a patch. How does contributor B, who doesn’t have
access to the same content, reproduce the results and
validate/refute the contribution? See [28] for a deeper
discussion of the issues involved. Some in the community have
tried to overcome this by starting the Open Relevance Project
(http:lucene.apache.org/openrelevance) but this has yet to gain
traction. Thus, it is up to individuals within the community who
work at institutions with access to the content to perform
evaluations and share the results with the community. Since most
in the community are developers focused on implementation of
search in applications, this does not happen publicly very often.
The authors recognize this is a fairly large gap for Lucene in terms
of IR research and is a gap these authors hope can be remedied by
working more closely with the research community in the future.

In the past, some individuals have taken on TREC-style
evaluations. In [17], a modified Lucene 2.3.0 was used in the
1 Million Queries Track. In [29], an unmodified Lucene 3.0, in
combination with query expansion techniques, was used in the
TREC 2011 Medical Track. In [30], Lucene 1.9.1 was compared
against a wide variety of open source implementations using out
of the box defaults. The impact of Lucene’s boost and coordinate
level match on tf / idf ranking is studied in [43]. Many researchers
use Lucene as a baseline (e.g. [44]), a platform for
experimentation or an example of implementation of standard IR
algorithms. For example, [45] used Lucene 2.4.0 in an “out of the
box” configuration, although it is not clear to these authors what
an out of the box Lucene configuration is, since the community
doesn’t specify such a thing.

8. FUTURE WORK
While the nature of open source is such that one never knows
exactly what will be worked on in the future (“patches welcome”
is not just a slogan, but a way of development -- the community
often jumps on promising ideas that save time or improve quality
and these ideas often seemingly appear from nowhere.) In
general, however, the community focus at the time of this writing
is on: 1) finalizing the 4.0 APIs and open issues for release, 2)
additional inverted index compression algorithms (e.g. PFOR) 3)
field-level updates (or at least updates for certain kinds of fields
like doc-values and metadata fields) and 4) continued growth of

higher order search functionality like more complex joins,
grouping, faceting, auto-suggest and spatial search capabilities.
Naturally, there is always work to be done in cleaning up and
refactoring existing code as it becomes better understood.

As important as the future of the code is to Lucene, so is the
community that surrounds it. Building and maintaining
community is and always will be a vital component of Lucene,
just as keeping up with the latest algorithms and data structures is
to the codebase itself.

9. CONCLUSIONS
In this paper, we presented both a historical view of Lucene as
well as details on the components that make Lucene one of the
key pieces of modern, search-based applications in industry today.
These components extend well beyond the code and include an
“Always Be Testing” development approach along with a large,
open community collectively working to better Lucene under the
umbrella that is known as The Apache Software Foundation.

At a deeper level, Lucene 4 marks yet another inflection point in
the life of Lucene. By overhauling the underpinnings of Lucene
to be more flexible and pluggable as well as greatly improving the
efficiency and performance, Lucene is well suited for continued
commercial success as well as better positioned for experimental
research work.

10. ACKNOWLEDGMENTS
The authors wish to thank all of the users and contributors over
the years to the Apache Lucene project, with a special thanks to
Doug Cutting, the original author of Lucene. We also wish to
extend thanks to all of the committers on the project, without
which there would be no Apache Lucene: Andrzej Białecki, Bill
Au, Michael Busch, Doron Cohen, Doug Cutting, James Dyer,
Shai Erera, Erick Erickson, Otis Gospodnetić, Adrien Grand,
Martijn van Groningen, Erik Hatcher, Mark Harwood, Chris
Hostetter, Jan Høydahl, Grant Ingersoll, Mike McCandless, Ryan
McKinley, Chris Male, Bernhard Messer, Mark Miller, Christian
Moen, Robert Muir, Stanisław Osiński, Noble Paul, Steven Rowe,
Uwe Schindler, Shalin Shekhar Mangar, Yonik Seeley, Koji
Sekiguchi, Sami Siren, David Smiley, Tommaso Teofili, Andi
Vajda, Dawid Weiss, Simon Willnauer, Stefan Matheis, Josh
Bloch, Peter Carlson, Tal Dayan, Bertrand Delacretaz, Scott
Ganyo, Brian Goetz, Christoph Goller, Eugene Gluzberg,
Wolfgang Hoschek, Cory Hubert, Ted Husted Tim Jones, Mike
Klaas, Dave Kor, Daniel Naber, Patrick O'Leary, Andrew C.
Oliver, Dmitry Serebrennikov, Jon Stevens, Matt Tucker, Karl
Wettin.

11. REFERENCES
[1] The Apache Software Foundation. The Apache Software

Foundation. 2012. Accessed 6/23/2012. http://www.apache.org.

[2] Apache License, Version 2.0. The Apache Software Foundation.
January 2004. Accessed 6/23/2012.
http://www.apache.org/licenses/LICENSE-2.0

[3] How it Works. The Apache Software Foundation. Circa 2012.
Accessed 6/24/2012. http://www.apache.org/foundation/how-it-
works.html

[4] Interview with Walter Underwood of Netflix. Lucid Imagination.
May, 2009. Accessed 6/23/2012.
http://www.lucidimagination.com/devzone/videos-
podcasts/podcasts/interview-walter-underwood-netflix

[5] Instagram Engineering Blog. Instagram. January 2012. Accessed
6/23/2012. http://instagram-

engineering.tumblr.com/post/13649370142/what-powers-instagram-
hundreds-of-instances-dozens-of

[6] Lucene Powered By Wiki. The Apache Software Foundation.
Various. Accessed 6/23/2012. http://wiki.apache.org/lucene-
java/PoweredBy/

[7] Apache Solr. The Apache Software Foundation. Accessed
6/23/2012. http://lucene.apache.org/solr.

[8] Interview with Doug Cutting. Lucid Imagination. circa 2008.
Accessed 6/23/2012.
http://www.lucidimagination.com/devzone/videos-
podcasts/podcasts/interview-doug-cutting

[9] Apache Subversion Initial Lucene Revision. The Apache Software
Foundation. 9/18/2001. Accessed 6/23/2012.
http://svn.apache.org/viewvc?view=revision&revision=149570

[10] Apache Subversion Lucene Source Code Repository. The Apache
Software Foundation. various. Accessed 6/23/2012.
http://svn.apache.org/repos/asf/lucene/java/tags/

[11] Apache Subversion Lucene Source Code Repository. The Apache
Software Foundation. various. Accessed 6/23/2012.
http://svn.apache.org/repos/asf/lucene/dev/tags/

[12] D. Cutting, J. Pedersen, and P. K. Halvorsen, “An object-oriented
architecture for text retrieval,” In Conference Proceedings of
RIAO'91, Intelligent Text and Image Handling, 1991.

[13] Levenshtein VI (1966)."Binary codes capable of correcting
deletions, insertions, and reversals". Soviet Physics Doklady 10:
707–10.

[14] Lucene 1.2 Source Code. The Apache Software Foundation. Circa
2001. Accessed 6/23/2012.
http://svn.apache.org/repos/asf/lucene/java/tags/lucene_1_2_final/

[15] E. Hatcher, O. Gospodnetic, and M. McCandless. Lucene in Action.
Manning, 2nd revised edition. edition, 8 2010.

[16] J. Pérez-Iglesias, J. R. Pérez-Agüera, V. Fresno, and Y. Z. Feinstein,
“Integrating the Probabilistic Models BM25/BM25F into Lucene,”
arXiv.org, vol. cs.IR. 26-Nov.-2009.

[17] D. Cohen, E. Amitay, and D. Carmel, “Lucene and Juru at Trec
2007: 1-million queries track,” Proc. of the 16th Text REtrieval
Conference, 2007.

[18] A Language Modeling Extension for Lucene. Information and
Language Processing Systems. Accessed 6/30/2012.
http://ilps.science.uva.nl/resources/lm-lucene

[19] D. Cutting and J. Pedersen. 1989. Optimization for dynamic inverted
index maintenance. In Proceedings of the 13th annual international
ACM SIGIR conference on Research and development in
information retrieval (SIGIR '90), Jean-Luc Vidick (Ed.). ACM,
New York, NY, USA, 405-411.

[20] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin,
“Earlybird: Real-Time Search at Twitter.”

[21] S. Robertson, S. Walker, and S. Jones, “Okapi at TREC-3,” NIST
SPECIAL 1995.

[22] Stephane Clinchant and Eric Gaussier. 2010. Information-based
models for ad hoc IR. In Proceeding of the 33rd international ACM
SIGIR conference on Research and development in information
retrieval (SIGIR '10). ACM, New York, NY, USA, 234-241

[23] G. Amati and C. J. Van Rijsbergen, “Probabilistic models of
information retrieval based on measuring the divergence from
randomness,” ACM Transactions on Information Systems (TOIS),
vol. 20, no. 4, pp. 357–389, 2002.

[24] Lucene Trunk Source Code. Revision 1353303. The Apache
Software Foundation. 2012. Accessed 6/24/2012.
http://svn.apache.org/repos/asf/lucene/dev/trunk/lucene/

[25] C. Zhai and J. Lafferty, “A study of smoothing methods for language
models applied to ad hoc information retrieval,” Proceedings of the
24th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 334–342, 2001.

[26] Fabrizio Silvestri and Rossano Venturini. 2010. VSEncoding:
efficient coding and fast decoding of integer lists via dynamic
programming. In Proceedings of the 19th ACM international
conference on Information and knowledge management (CIKM '10).

[27] Douglass R. Cutting and Jan O. Pedersen, Space Optimizations for
Total Ranking, Proceedings of RAIO'97, Computer-Assisted
Information Searching on Internet, Quebec, Canada, June 1997, pp.
401-412.

[28] TREC Collection, NIST and Lucene. Apache Lucene Public Mail
Archives. Aug. 2007. Accessed 6/30/2012.

[29] B. King, L. Wang, I. Provalov, and J. Zhou, “Cengage Learning at
TREC 2011 Medical Track,” Proceedings of TREC, 2011.

[30] C. Middleton and R. Baeza-Yates, “A comparison of open source
search engines,” 2007.

[31] C. J. van Rijsbergen. Information Retrieval, 2nd edition. 1979,
Butterworths

[32] The Xapian Project. Accessed 7/2/2012. http://www.xapian.org

[33] The Lemur Project. CIIR. Accessed 7/2/2012.
http://www.lemurproject.org

[34] Terrier IR Platform. Univ. of Glasgow. Accessed 7/2/2012.
http://www.terrier.org

[35] P. Boldi, “MG4J at TREC 2005,” … Text REtrieval Conference
(TREC 2005). 2005.

[36] V. Anh, A. Moffat. Structured index organizations for high-
throughput text querying. String Processing and Information
Retrieval, 304–315, 2006.

[37] G. Salton, E. A. Fox, and H. Wu. Extended Boolean information
retrieval. Commun. ACM 26, 11 (November 1983), 1022-1036

[38] S. Mihov , D. Maurel. Direct Construction of Minimal Acyclic
Subsequential Transducers. 2001.

[39] J. Daciuk, D. Weiss. Smaller Representation of Finite State
Automata. In: Lecture Notes in Computer Science, Implementation
and Application of Automata, Proceedings of the 16th International
Conference on Implementation and Application of Automata,
CIAA'2011, vol. 6807, 2011, pp. 118—192.

[40] Yves Rasolofo and Jacques Savoy. Term proximity scoring for
keyword-based retrieval systems. In Proceedings of the 25th
European conference on IR research (ECIR'03), Fabrizio Sebastiani
(Ed.). Springer-Verlag, Berlin, Heidelberg, 207-218, 2003.

[41] S. Büttcher, C. Clarke, B. Lushman, B. Term proximity scoring for
ad-hoc retrieval on very large text collections. Proceedings of the
29th annual international ACM SIGIR conference on Research and
development in information retrieval, 621–622, 2006.

[42] A. Moffat, J. Zobel. Fast Ranking in Limited Space. In Proceedings
of the Tenth International Conference on Data Engineering. IEEE
Computer Society, Washington, DC, USA, 428-437, 1994.

[43] L. Dolamic, J. Savoy. Variations autour de tf idf et du moteur
Lucene. In: Publié dans les 1 Actes 9e journées Analyse statistique
des Données Textuelles JADT 2008, 1047-1058, 2008

[44] X. Xu, S. Pan, J. Wan. Compression of Inverted Index for
Comprehensive Performance Evaluation in Lucene. 2010 Third
International Joint Conference on Computational Science and
Optimization (CSO), vol. 1, 382–386, 2010

[45] T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel, “Has adhoc
retrieval improved since 1994?,” presented at the SIGIR '09:
Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, 2009.

