
A Framework for Bridging the Gap Between Open Source
Search Tools

Madian Khabsa1, Stephen Carman2, Sagnik Ray Choudhury2 and C. Lee Giles1,2

1Computer Science and Engineering
2Information Sciences and Technology

The Pennsylvania State University
University Park, PA

madian@psu.edu, shc5011@ist.psu.edu, sagnik@psu.edu, giles@ist.psu.edu

ABSTRACT
Building a search engine that can scale to billions of docu-
ments while satisfying the needs of the users presents serious
challenges. Few successful stories have been reported so far
[37]. Here, we report our experience in building YouSeer, a
complete open source search engine tool that includes both
an open source crawler and an open source indexer. Our
approach takes other open source components that have
been proven to scale and combines them to create a compre-
hensive search engine. YouSeer employs Heritrix as a web
crawler, and Apache Lucene/Solr for indexing. We describe
the design and architecture, as well as additional compo-
nents that need to be implemented to build such a search
engine. The results of experimenting with our framework in
building vertical search engines are competitive when com-
pared against complete open source search engines. Our
approach is not specific to the components we use, but in-
stead it can be used as generic method for integrating search
engine components together.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - search process; H.3.4 [Information

Storage and Retrieval]: Systems and Software

General Terms
Design, Documentation, Performance

Keywords
Search Engines, Software Architecture, Open Source

1. INTRODUCTION
In the past fifteen years, many search engines have emerged
out of both industry and academia. However, very few have
been successful [37]. Those are a number of challenges [28].
Firstly, the documents need to be collected before they are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR 2012 Workshop on Open Source Information Retrieval. August 16,
2012, Portland, Oregon, USA.
The copyright of this article remains with the authors.

searchable. These documents may be found on the local in-
tranet, a local machine, or on the Web. In addition, these
documents range in format and type from textual files to
multimedia files that incorporate video and audio. Expe-
diently ranking the millions of results found for a query in
a way that satisfies the end-user need is still an unresolved
problem. Patterson [37] provides a detailed discussion of
these hurdles.

As such, researchers and developers have spent much time
and effort designing separate pieces of the search engine sys-
tem. This lead to the introduction of many popular search
engine tools including crawlers, ingestion systems, and in-
dexers. Examples of such popular tools include: Apache
Lucene/Solr, Indri, Terrier, Sphinx, Nutch, Lemur, Heritrix,
and many others. The creators of each tool have introduced
software with multiple features and advantages, but each one
of them has its own limitations. Since the problems faced by
designing a crawler are quite different from what an indexer
developer would face, researchers have dedicated projects to
tackling certain parts of the search engine. Furthermore, the
same unit within the search engine (such as indexer) may in-
troduce different challenges based on the application need.
Working on scaling an indexer to support billions of docu-
ments is different than creating a real time indexer, therefore
each use case has lead to a respective solution.

Few projects aim at building a complete open source search
engine that includes a web crawler, ingestion module, in-
dexer, and search interface. While complete search engine
tools provide all the different pieces to run a search engine,
these pieces tend to be outperformed by task specific open
source search tools when compared against each other based
on the specific task only. For example, while Apache Nutch
provides an entire search engine solution, Heritrix, which
is just a web crawler, is more powerful and versatile when
compared solely against the Nutch crawler. This observa-
tion has lead us to consider building a unified framework
where search engine components can be plugged in and out
to form a complete search engine.

New projects are started everyday to solve a specific prob-
lem for search engines, or to to introduce new features. Like-
wise, many projects have been out of support and develop-
ment after being abandoned by the community. The level
of support and the richness of the features are what usually
determines how prevalent an open source project is. We

propose building a search engine framework that is modular
and component agnostic where different crawlers or indices
can be interchanged as long as they conform to a set of
standards. This modularity facilitates plugging components
that satisfies the users need with minimal to no changes of
the framework’s code base. Under such framework, powerful
components can be included as they mature, and the com-
munity can focus on advancing specific parts of the search
engine without worrying about building a complete search
engine.

In this paper, we demonstrate how to exploit these freely
available tools to build a comprehensive search framework
for building vertical and enterprise search engines. We out-
line the architecture of the framework, and describe how
each component contributes to building a search engine, and
the standards and communication mechanisms between the
different components. We rely on agreed upon standards to
control the communication mechanisms between the differ-
ent parts of the search engine in order to allow maximum
flexibility and reduce coupling between the components. For
the crawler, we assume that crawlers will save the crawled
documents in WARC format, which became the standard
for web archiving in 2009 [1]. Warc files are compressed files
that contain records about the metadata of the crawled doc-
ument along with the documents itself. We implement the
middleware which is responsible for ingesting the crawled
files, and pass them to the indexer over a REST API [26].
REST has become the defacto standard for accessing web
services, and in this case we assume that indices are provid-
ing a REST API to communicate with the ingestion module
and with the query interface. This assumption is rational as
most indices end up providing some access mechanism over
HTTP to support distribution.

The framework we are introducing here, YouSeer, not only
can be used for building niche search engines but also for
educational purposes. For the last three years YouSeer has
been piloted in an advanced undergraduate/graduate class
at Penn State designed to give students the ability to build
high end search engines as well as properly reason around the
various parts and metrics used to evaluate search engines.
Students in this class were tasked with finding a customer
within the Penn State community, usually a professor or
graduate student, who is in need of a search engine. Students
then were required to build a complete search engine from
concept to delivery. This included crawling, indexing and
query tuning if necessary. This class has yielded many niche
based search engines of varying levels of complexity all using
YouSeer as a software package. The level of technical know
how in the class ranges from beginners with UNIX/Java to
PhD level students in Computer Science/Engineering and
Information Sciences and Technology.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work and describes other open source search
engines. Section 3 provides an overview of the architecture
of YouSeer, while Section 4 discusses the workflow inside
the framework. In Section 5 we describe the experiments.
Finally, we conclude and identify areas of future work in
Section 6.

2. RELATED WORK
The use of search engines to find content goes back to the
days of library search, where librarians have used and devel-
oped the techniques of information retrieval to find content
within books. These techniques have been carried out to
the domain of web search, and enterprise search. Though
web search added the concept of web crawler, or spider, to
download the documents from the web, which can be used
to discriminate the web search era from the previous era of
librarian search.

The open source community felt the urge for an alternative
to the commercial search engines that are dominating the
market. Part of the need was to provide transparent solu-
tions where users control the ranking of results and made
sure they have not been manipulated. In addition, licensing
the search services from these commercial search engines can
be expensive.

ht://Dig [7] is one of the early open source search tools which
was created back in 1995 at San Diego State University.
The project is not designed to scale for the needs of entire
web indexing. Instead it’s designed to index content of few
websites, or intranet. ht://Dig supported boolean and fuzzy
queries, and had the ability to strip text out of HTML tags.
Currently the project is out of support, as the latest release
was back in 2004.

Apache Luecene [3] is considered one of the very popular
search libraries which has been ported to multiple languages.
It was originally written in Java by Doug Cutting back in
2000, and later it became part of the Apache Software Foun-
dation. Though Lucene is not a search engine itself, but it’s
an indexing library which can be used to perform all the
indexing operations on text files. It can be plugged into any
search application to provide the indexing functionality.

Numerous search engines were developed on top of the Lucene
library, including commercial and open source solutions. Nutch
[29, 24] was among the early search engines developed on top
of lucene. It added a web crawler and a search interface and
used the lucene indexing library to build a comprehensive
search engine. Nutch was later added to the Apache Soft-
ware Foundation as a sub-project of Lucene. In develop-
ing Nutch, the developers have aimed at creating a scalable
tool that can index the entire web. However, the largest
crawl ever reported on Nutch was 100 million documents
[29, 34] despite supporting parallel crawling on different ma-
chines. In addition, Nutch added link analysis algorithms to
its ranking function to take into account the importance of
the pages along with the relevancy.

Although Nutch provides rich set of crawling features, many
other open source crawlers, i.e. Heritrix [5], provide far more
complex and advanced features. For examples, the deciding
rules for accepting a file or rejecting it in the crawling process
are much powerful in Heritrix than Nutch. The ability to
take check points, pause and resume crawling, and restore
the crawling process in case of failure are also advantages
of Heritrix that Nutch lacks. In addition, Nutch obeys the
robots exclusion protocol, Robots.txt, and force the users to
obey it without giving them the option ignore it totally or

partially. Along with forcing minimum waiting time between
fetching attempts for files on the same domain, the crawling
process using Nutch may end up being slow.

Another popular distribution of Lucene is Apache Solr [4]
which provides enterprise search solution on top of Lucene.
Solr provides a RESTful like API on top of Lucene, so that
all communication with the index is done over HTTP re-
quests which makes Solr embed-able into any application
without worrying about the implementation. On top of that,
Solr provides distributed searching, query caching, spell cor-
rections, and faceted search capabilities. But as mentioned,
Solr is another search framework and not a complete search
engine solution. The main missing component is a web
crawler. Though it can be plugged into Nutch as the back-
ground indexer instead of Lucene. A query interface and
results page are also missing, as the shipped interface is for
testing purposes only. This is attributed to the fact that
Solr is not a standalone application, rather it’s a library or
framework which get plugged into another application.

NutchWAX [13] attempts to merge Nutch with the web
archive extensions such that the solution will search the
web archive. Currently it only supports ARC files, though
WARC [1] files (standard format for archiving web content)
are easily converted to ARC. NutchWAX requires Hadoop
platform [2] to run the jobs on it, as the tasks are imple-
mented using the Map/Reduce paradigm [25].

Since Lucene proved to be a scalable indexing framework,
many open source search engine adopted it and built so-
lutions on top of it. For example, Hounder [6] not only
capitalize on Lucene, but also on some modules of Nutch
to provide large scale distributed indexing and crawling ser-
vices. The crawling and the indexing processes are easily
configured, launched and monitored via GUI or shell script.
However, the options that can passed to the crawler are lim-
ited compared to large scale crawlers like Heritrix, as most of
the configurations are regular expressions only. These reg-
ular expressions are either entered into a simple java GUI,
or appended to the numerous configuration files. The ex-
tendibility of the system is not an easy task as well.

Another popular search framework is Xapian [21], which is
built with C++ and distributed under GPL license. The
framework is just an indexing library, but it ships with web
site search application called Omega [14] that can index files
of multiple formats. Though the Xapian framework doesn’t
contain a crawler, Omega can crawl files on the local files
system only.

Researchers at Carnegie Mellon University and University
of Massachusetts Amherst have developed Indri [40, 8] as a
part of the Lemur project [33, 10]. Indri is a language model
based search engine that can scale for 50 million documents
on a single machine and 500 million documents on a cluster
of machines. It supports indexing documents from differ-
ent languages, and multiple formats including PDF, Word,
PPT. In addition to traditional IR models, Indri combines
inference networks along with language models which makes
it a unique solution when compared to other frameworks.
However, Indri doesn’t contain a web crawler, and has to be
used along with a 3rd party crawler. Nevertheless, Indri can

ingest documents from the file system, TREC collections,
or archived files in a WARC format. So, the choices for a
crawler to use with Indri are large.

Besides indexing web content and intranet documents, some
search engines were developed to index SQL databases. Pro-
viding full text search for DBMS content is important for
enterprises with large databases, especially when the built
in full text search is not fast enough. Sphinx [15] provides a
full text search solution for SQL databases, as it comes with
connectors to many commercial databases. Besides connect-
ing to databases, Sphinx may be configured to index content
from XML files which were written in specific format. But,
since Sphinx is aimed at indexing SQL databases, it can’t be
considered as a complete search engine, and rather a SQL
indexing framework.

At RMIT university, researchers have developed Zettair [22],
an open source search engine which is written in C. Zettair’s
main feature is the ability to index large amounts of text files
[31]. It’s been used to index 426GB of TREC terabyte track
collection, according to the official documentation page. On
the flip side, Zettair can only deal with HTML and plain
text files, thus lacking the feature of indexing rich media
files. Besides, it assumes the user has already crawled the
files, and doesn’t provide any crawler out of the box.

Swish-e [16] is another open source search engine which is
suitable for indexing small content, less than 1 million doc-
uments. It can be used to crawl the web via a provided
perl script, and index files from various data-types: PDF,
PPT ...etc. But since it can only support up to one million
documents, scalability is not a feature of this search engine.

As academia continued to contribute to open source search
engines, researchers at the University of Glasgow have intro-
duced Terrier [17, 36, 35] as the “first serious answer in Eu-
rope to the dominance of the United States on research and
technological solutions in IR” [36]. Terrier provides a flex-
ible and scalable indexing system with implementations of
many state-of-the-art information retrieval algorithms and
models. Terrier has proven to compete with many other
academic open source search engines, like Indri and Zettair,
in TREC workshops [36]. To support large scale indexing,
Terrier uses MapReduce on Hadoop clusters to parallelize
the process. Interacting with Terrier is made easy for al-
most all users by providing both desktop and web interface.
Nevertheless, as the case with many other open source search
solutions, Terrier doesn’t ship with a web crawler, but it can
be integrated with a crawler that was also developed at the
University of Glasgow: labrador [9].

MG4J (Managing Gigabytes for Java) [23, 11] is a search
engine released under GNU lesser general public license.
It’s being developed at the University of Milan, where re-
searchers are plugging state-of-the-art algorithms and rank-
ing functions into it. The package lacks a fully-fledges web
crawler, and relies on the user to provide the files, but it can
crawl files on the file system. Despite the numerous advan-
tages of the system, ease of use seems to elude this search
engine.

WebGlimpse [20] is yet another search engine, though it has

a different licensing model as it is free for students and open
source projects, but needs to be licensed for any other use.
It’s built on top of Glimpse indexer which generate indices
of very small size compared to the original text (2-4% of
the original text) [30]. WebGlimpse can index files on the
local filesystem, remote websites, or even crawl webpages
from the web and index them. But the crawler has limited
options which makes it incompetent to do a large scale web
crawl.

mnoGoSearch [12] is another open source search engine which
have versions for different platforms including Linux/Unix
and Windows. It’s a databases back ended search engine,
which implements its own crawler and indexer. Since it’s
dependent on the databases in the back end, the database
connectivity may become the bottleneck of the process in
case the number of running threads passed the limit of con-
current open connections to the database. The configuration
options of the crawler are also limited compared to Heritrix
and Nutch. Besides, indexing rich media files like PDF and
Doc is not supported internally, though external plugins can
be used to convert these files.

When comparing open source search engines, many aspects
are taken into consideration. These aspects include: com-
pleteness of the solution in terms of components (example:
some libraries don’t have crawlers), the scalability of the so-
lution, the extendibility of the search engine, the supported
file types, license restrictions, support of stemming, stop
words removal, fuzzy search, index language, character en-
coding, providing snippets for the results, ranking functions,
index size compared to the corpus size, and query response
time.

Many researchers had done work on comparing the perfor-
mance of multiple open source search engines. Middleton
and Baeza-Yates compared 29 popular open source search
engines in [31]. Their comparison considered many of the
aspects mentioned before, along with precision and recall
performance results on TREC [18] dataset. However, their
analysis is more focused on the indexing section of the search
engine without considering the crawling process at all. In
fact, many of the libraries that they compare are only index-
ing libraries, and not complete search engines (i.e. Lucene).
Another experiment on indexing with open source search
libraries was performed in 2009 on data from Twitter [39].
This experiment was conducted on small data which doesn’t
test the scalability of the indexer. Similar to the study by
Middleton and Baeza-Yates [31], [39] doesn ot take into con-
sideration the crawling task of the search engine.

3. ARCHITECTURE AND IMPLEMENTA-
TION

Our design must include the most important parts of a
search engine, a crawler and the index engine. YouSeer’s ar-
chitecture is presented in Figure 1. While most of YouSeer’s
components can be substituted with equivalent open source
components, we describe the architecture and the implemen-
tation using the components we deploy, without loss of gen-
erality of the approach.

Figure 1: YouSeer Architecture.

The framework is implemented in Java and the interfaces
are in JSP.

3.1 Crawler
A web crawler is a software that downloads documents from
the web and stores them locally. The process of downloading
is sequential where the crawler will extract the outgoing links
from every downloaded document and schedule these links
to be fetched later according to the crawling policy.

The Internet Archive’s crawler, named Heritrix [32], was
chosen as a web crawler for YouSeer. Heritrix serves as good
example of embedding any web crawler into a search engine
since it dumps the downloaded documents to the hard disk
in the Warc format, which in 2009 became the standard for
archiving web content[1]. By default, Heritrix writes the
downloaded documents into compressed ARC files, where
each file aggregates thousands of files. Compressing and ag-
gregating the files is essential to keeping the number of files
in the file system manageable, and sustaining lower access
time.

Heritrix expects the seed list of the crawl job to be entered
as a text file along with another file that defines the crawling
policy. Then the crawler will proceed by fetching the URLs
in the seed list and write them to ARC/Warc files. This
process can be assumed to be the standard workflow of any
web crawler, thus the integration of Heritrix can be used as
example on how to integrate almost any web crawler into a
search engine.

Heritrix provides flexible and powerful crawling options that
make it ideal for multiple focused crawling jobs. These fea-
tures include the ability to filter documents based on many
deciding rules such as regular expressions, file types, file
size, and override the policies per domain. The ability to
tune the parameters of connection delay, and control the
max wait time along with number of concurrent connections
are advantageous when crawling for a vertical search engine.
Despite the lack of support for parallel crawling on multiple
instances, Heritrix is continuously being used at the Internet
Archive to crawl and archive the web which can be argued
to be the largest crawl ever to be conducted using an open

source crawler. While teaching a search engine class, stu-
dents have preferred using heritrix over other open source
crawlers such as Nutch because Heritrix provides an easy to
use web interface to run crawling jobs, and for the richness
of the features and the detailed control of the parameters
which the students can specify. This helped the students
grasp the challenges of crawling the web, while at the same
time gave them the chance to monitor how the crawl job is
progressing and what parameters they need to change.

Besides the web crawler, YouSeer implements its own local
hard drive harvester. This allows it to function as a desktop
search engine as well. The crawler runs in a breadth-first
manner, starting at a certain directory or network location
iterating over the the files and folders inside that folder. This
would complement our assumption in the framework that
crawlers should produce Warc files, as the local file harvester
would enable YouSeer to index documents mirrored onto the
file system by different crawlers that do not produce Warc
files.

3.2 Indexer
YouSeer adopts Apache Solr for indexing, which provides a
REST-like API to access the underlying Lucene index. Deal-
ing with an indexing interface with a RESTful API [26] over
HTTP gives a layer of abstraction to the underlying index-
ing engine, and provides YouSeer with the ability to employ
any indexing engine as long as it provides a REST API [26].
Such an API may be built as a wrapper on top of the ex-
isting non-web API. Thus, the indexing engine in YouSeer
is just a URL with the operations that the index provides.
These operations are typically: index, search, delete, and
optimize.

Besides the native features of Lucene, Solr provides addi-
tional features like faceted search, distributed search, and
index replication. All these features combined with the flex-
ibility to modify the ranking function makes a good case for
adopting Solr as indexer. In addition, Solr is reported to be
able to index 3 billion documents [38].

YouSeer distribution deploys two instances of Solr, one for
web documents and another one for files crawled from the
desktop. The separation between the instances can be achieved
either by having two standalone Solr instances, or two cores
deployed on the same instance. Cores are methods for run-
ning multiple indices with different configuration in the same
Solr instance. By default one core is configured to index
content from the web, and the other core is used to index
documents on the file system. In the case of multi-core solr,
users maintain a single Solr instance, while having the abil-
ity to tune each index independently. This becomes a need
as field numbers for web content differs from file-system con-
tent. More importantly, the ranking of web documents may
be far more complicated than ranking file-system content.
Since YouSeer is only aware of the URL of the core (a core is
treated just like a dedicated index), it can be easily modified
to use a dedicated index instead of a core in case the number
of documents scales beyond what a single core can handle.
Furthermore, Solr distributed search techniques can be used
to replace a core when the number of documents grows be-
yond the capabilities of a single machine. This seamless

transition is made possible because all the different distri-
butions of the index (cores, standalone, distributed) provide
the same RESTful API, and the ingestion module along with
the query interface only care about the server URL without
knowing the specific implementation of the server.

3.3 Database
A search engine occasionally needs to store some information
in a database. Such information can be for reporting pur-
poses, or needed for performing certain operations. YouSeer
uses a database for three reasons: (1) keep track of success-
fully processed Warc/Arc files in order to avoid processing
them again, (2) for storing metadata about cached docu-
ments, and (3) to log errors during ingestion. YouSeer uses
MySQL as DBMS server, however SQLite was proved to be
suitable for small to medium level datasets. YouSeer inter-
acts with the database through JDBC, hence it can adopt
any DBMS that has a JDBC driver.

3.4 Extractor
Search engines need to handle files in multiple formats rang-
ing from simple html pages to files with rich content like
Word and PDF along with audio and video. Apache TIKA
[19] empowers YouSeer with the ability to extract metadata
and textual content from various file formats such as PDF,
WORD, Power Point, Excel Sheets, MP3, ZIP, and multi-
ple image formats. Tika is currently a standalone Apache
project that supports standard interface for converting and
extracting metadata from popular document formats. While
YouSeer ships coupled with Tika, it’s still fairly straightfor-
ward to replace it with other converters as needed.

3.5 Ingestion Module
The ingestion module is where the crawled documents get
processed and are held to be indexed. The Warc/Arc files
are processed to extract the records containing individual
documents and the corresponding metadata. Documents of
predefined media types are passed to multiple extraction
modules such as PDFBox to extract their textual content
and metadata. The user specifies the mime types she is
interested in indexing by editing a configuration file that
lists the accepted mime types. The extracted information
is later processed and submitted to the index. This module
also stores the document’s metadata into the database and
keeps track of where the cached copy is stored.

The ingestion module is designed in a such a way that differ-
ent extractors operate on the document, after that each ex-
tractor emits extracted fields, if any, to be sent to the index.
By default the Extractor class provides all the out of the box
extraction and population for the standard fields of the index
such as title, url, crawl date and others, while CustomEx-
tractor is left for the end user to implement. CustomEx-
tractor is called after Extractor giving the user the ability
to override the extracted fields, and extract new fields. This
approach makes it easy for the users to implement their own
information extractors. For example, while building a search
engine for a newspaper website, the customer asked for pro-
viding search capability based on the publication date. The
publication date could be extracted from the URL as the
newspaper formats its URL as follows:

www.example.com/YYYY/MM/DD/article.html

To achieve this, we implemented the CustomExtractor class
of the ingestion module so that it would extract the infor-
mation from the URL and append the extracted date to the
xml file which is to be sent to the indexer.

3.6 Query Interface
YouSeer has two search interfaces basic and advanced that
provide access to the underlying Lucene index. The basic
interface is similar to most search engines where users enter
a simple query term before the relevant links are returned.
The advanced search provides search fields for each search-
able field in the index and allows the users to set the ranking
criterion. Query suggestions, aka auto-complete, are dis-
played for the user while inputting the query terms. These
suggestions are generated offline by extracting the word-level
unigram, bigram, and trigram of terms in the index. When
enough query logs are accumulated, they can be used for
query suggestions instead of the index terms.

Furthermore, queries are checked for misspellings using the
terms in the index instead of a third party dictionary. This
would be suitable in the case of vertical search engines that
deal with special domains terminologies.

Since the index is accessed through a REST web service,
the query interface receives the query terms from the user
and send an HTTP request to the index. The REST API
provides a level of abstraction for the interface to communi-
cate with multiple types of indices as long as they provide a
similar API.

Along with the query interface, YouSeer provides an admin
interface from which users can launch new ingesting jobs and
track the progress of previously started jobs.

3.7 Documents Caching
Accessing older versions of some documents, or being able
to view them while their original host is down, is consid-
ered an advantage for a search engine. The caching module
keeps track of the different versions that have been crawled
and indexed of a document. As documents are stored into
Ward/Arc files, the relative location of the containing Warc
file is stored in the index along with the documents fields.
In addition to the surrogate file name, the index would con-
tain the offset of the file within the Warc file. The offset is
needed because Warc and Arc files can only be read sequen-
tially. The Warc/Arc files are mounted on virtual directory
on the web server, therefore they can be accessed over the
network allowing them to be located on a different location
than the server or the crawler.

When the user requests a cached version for an indexed doc-
ument, the caching module locates the containing Arc/Warc
file and seeks to the beginning of the document’s record read-
ing it and returning content to the user. If the requested file
is not an HTML document, the module can convert DOC,
PDF, PPT, XLS format and other formats into HTML.

YouSeer caching module provides integration with Google
Docs preview, so that cached documents can be viewed as a

Figure 2: Cache Architecture

Google document on the fly. The feature works on supported
formats only, like PDF, Doc, and PPT. This allows users
to quickly view rich media documents without the need to
download them. Figure 2 shows the workflow of the caching
module.

4. WORKFLOW
In this section we present an overview of how the whole
system works. A typical job starts by scheduling a crawl
task on Heritrix. First the seed URLs are provided and the
rest of the parameters are defined. These parameters include
the max-hop, max file size limit, max downloaded files limit,
and other crawl politeness and request-delay values. The
crawler proceeds by fetching the seed URLs, extracting their
outgoing links, and scheduling these links for an in breadth-
first crawl. As part of the parameter specification, the user
chooses the format by which the crawled results are written
into. The default is Arc, but other file formats such as Warc
or simply mirroring the fetched documents on a hard drive
are available. Converting the Arc files into Warc format
can be accomplished through command line tool. Should
the user keep the format as Arc, the downloaded documents
are combined and then written to a single compressed ARC
file [32], which is in this case limited to 100MB. Along with
every document, Heritrix stores a metadata record in the
compressed file.

The ingestion module, which is the middleware between the
crawler and the index, waits for the ARC/WARC files to be
written and then iterates on all the documents within the
ARC file processing them sequentially. The ingestion pro-
cess does not necessarily wait for the crawler to terminate,
rather it keeps polling for new files to be written so it can
process them. The middleware extracts the textual content
from the HTML pages and the corresponding metadata cre-
ated by Heitrix. For rich media formats such as Word, PDF,
Power Point, YouSeer converts the document into text us-
ing Apache TIKA. The output of the middleware is an XML
file containing the fields extracted from the documents. The
URL of each document serves as the document ID within
the index.

Each ingestion plug-in contributes to building this XML file

by appending its result as an XML tag. The URL of the
ARC file, and the offset of the document within the ARC
file are appended to the XML file to expedite retrieval.

The resulting XML file from the processing is posted to the
index. After processing all the documents within a single
ARC file, the middleware commits the changes to the index
and marks the ARC file as processed. While indexing, the
word-level n-grams are extracted and added to the query
suggestion module.

5. EXPERIMENTS
We perform a number of experiments to measure the perfor-
mance of our proposed framework. The experiments entail
crawling the web by focusing on a set of seed URLs then
processing the crawled documents in the ingestion module
before they are indexed.

In the first experiment, we aim at creating a search engine
for the OpenCoursWare , OCW, 1 courses. We compile a
seed list of 50 English speaking universities and crawl the
seeds with Heritrix 1.14.4. We set a limit of 100,000 to the
maximum number of files that can be downloaded. The
job finished after reaching 100,000 documents in 4 hours
and 17 minutes running 50 threads. We used an out of the
box configuration for Heritrix, and only modified the max
number of documents to be fetched. The size of the data
crawled by Heritrix was 15 GB compressed into ARC files.
For comparison, we use Nutch 1.5 to crawl the same seed list.
Similar to Heritrix, we used 50 threads for crawling and keep
the rest of the configurations to their default values. We
limited the hops to 5 and specify the topN value at 20,000.
topN controls the maximum number of pages that can be
downloaded at each level of the crawl. This should limit the
entire crawl to roughly 100,000 pages. The job terminated
after 9 hours, and downloaded 42806 documents. The size of
the entire crawl files was 838 MB, including segments, linkdb,
and crawldb. We guess that Nutch prioritized crawling small
HTML documents over PDF and PPT files.

For both YouSeer and Nutch, we used Apache Solr 3.6 as an
indexing engine. We start by running Nutch solr indexer,
and monitor the process using Sysstat [27], which is a pop-
ular tool for monitoring system resources and utilization on
Linux. As Nutch does not allow specifying the number of
threads for ingestion, unlike YouSeer, we started the inges-
tion command and monitored the threads long with mem-
ory and CPU usage through Sysstat. We recorded 16 active
threads ran that under Nutch process during ingestion. The
entire ingestions and indexing process took 3.35 minutes,
that is 199 URLs/second and around 3.8 MBs/second. On
the other hand, since YouSeer allows controlling the number
of ingestion threads, we used the same number of threads as
reported by Sysstat. YouSeer middleware took 15 minutes
to process the 100,000 documents. That is 111 URL/second
and around 16 MBs/second. Table 1 summarizes the results
for OCW search engine experiment. The CPU and memory
usage represent the max usage as captured by Sysstat. The
machine on which the experiments was ran is Dell worksta-
tions with 2 dual core processors and 4 GB of memory. The
CPU usage is normalized by the total number of CPUs.

1http://www.ocwconsortium.org/

Table 1: Comparison of different parameters for in-

gesting and indexing OpenCourseWare content

Parameter YouSeer Nutch

docs 100,000 42806
Size 15 GB 838 MB
CPU 0.81% 0.25%

Memory 37.44% 14.37%
Time in minutes 15 3.35
URL / Second 119 199

MB / Sec 16 3.8

This experiments shows how YouSeer framework can in-
gest larger amount of data per second. And since Heritrix
crawl jobs can run faster, plugging in different components
of search engines seems to yield faster turn around time and
larger processing power supporting our idea of utilizing dif-
ferent open source components rather than building all the
pieces of a search engine.

In another experiment, we crawled for 20 million documents
with 50 threads, this job took less than 40 wall clock hours.
One million documents of multiple formats (pdf, html, ppt,
doc, etc.) were indexed in less than 3 hours. These experi-
ments were conducted on a Dell server with 8 processors, 4
cores each and 32 GB RAM, running linux.

6. CONCLUSION AND FUTURE WORK
We described the architecture of YouSeer, a complete open
source search engine. The approach used for building YouSeer
can be extended to support constructing powerful search
tools by leveraging other open source components in such
a way that maximizes usability and minimizes redundancy.
YouSeer a natural fit for vertical search engines and to the
enterprise search domain. It also serves as pedagogical tool
for information retrieval and search engine classes. The ease
of use and flexibility of modification makes adoptable for
research experiments. Our experiments shows that YouSeer
can be more effective that other complete open source search
engines in certain scenarios.

We enumerated the list of open source libraries that the sys-
tem uses and introduced a middleware to coordinate these
modules. The current version of YouSeer is hosted on Source-
Forge and a virtual appliance box is available for download
to eliminate the installation overhead.

In the future, we plan to introduce modules to parallelize the
processing and take advantage of the MapReduce paradigm.
We also look forward to investigating security models that
would protect the data from being access by unauthorized
users. Currently we rely solely on the web server and the
operating system to provide security mechanisms.

7. ACKNOWLEDGMENTS
We acknowledge partial funding from NSF and the Informa-
tion Technology Services at the Pennsylvania State Univer-
sity. We also thank Pradeep Teregowda, Mike Halm, and
Kevin Kalupson for their contribution.

8. REFERENCES
[1] http://www.iso.org/iso/news.htm?refid=Ref1255.

[2] Apache hadoop. http://hadoop.apache.org/.

[3] Apache lucene. http://lucene.apache.org/.

[4] Apache solr. http://lucene.apache.org/solr/.

[5] Heritrix. http://crawler.archive.org/.

[6] Hounder on google code.
http://code.google.com/p/hounder/.

[7] ht://dig. http://www.htdig.org/.

[8] Indri homepage.
http://www.lemurproject.org/indri.php.

[9] Labrador homepage.
http://www.dcs.gla.ac.uk/~craigm/labrador/.

[10] Lemure homepage. http://www.lemurproject.org.

[11] Mg4j homepage. http://mg4j.dsi.unimi.it/.

[12] mnogosearch homepage.
http://www.mnogosearch.org.

[13] Nutchwax. http://archive-access.sourceforge.
net/projects/nutch/.

[14] Omega homepage.
http://xapian.org/docs/omega/overview.html.

[15] Sphinx homepage. http://www.sphinxsearch.com.

[16] Swish-e homepage. http://swish-e.org/.

[17] Terrier homepage. http://terrier.org/.

[18] Text retrieval conference (trec).
http://trec.nist.gov/.

[19] Tika homepage. http://tika.apache.org/.

[20] Webglimpse homepage. http://webglimpse.net.

[21] Xapian homepage. http://xapian.org.

[22] Zettair homepage.
http://www.seg.rmit.edu.au/zettair.

[23] P. Boldi and S. Vigna. MG4J at TREC 2005. In E. M.
Voorhees and L. P. Buckland, editors, The Fourteenth
Text REtrieval Conference (TREC 2005) Proceedings,
number SP 500-266 in Special Publications. NIST,
2005. http://mg4j.dsi.unimi.it/.

[24] M. Cafarella and D. Cutting. Building nutch: Open
source search. Queue, 2(2):61, 2004.

[25] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[26] R. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California, 2000.

[27] S. Godard. Sysstat: utilities for linux.
http://sebastien.godard.pagesperso-orange.fr/.

[28] M. Henzinger, R. Motwani, and C. Silverstein.
Challenges in web search engines. In ACM SIGIR
Forum, volume 36, pages 11–22. ACM, 2002.

[29] R. Khare, D. Cutting, K. Sitaker, and A. Rifkin.
Nutch: A flexible and scalable open-source web search
engine. Oregon State University, 2004.

[30] U. Manber and S. Wu. GLIMPSE: A tool to search
through entire file systems. In Usenix Winter 1994
Technical Conference, pages 23–32, 1994.

[31] C. Middleton and R. Baeza-Yates. A comparison of
open source search engines. In grid-computing,
volume 1, page 1.

[32] G. Mohr, M. Stack, I. Rnitovic, D. Avery, and

M. Kimpton. Introduction to heritrix. In 4th
International Web Archiving Workshop, 2004.

[33] P. Ogilvie, , P. Ogilvie, and J. Callan. Experiments
using the lemur toolkit. In In Proceedings of the Tenth
Text Retrieval Conference (TREC-10, pages 103–108,
2002.

[34] C. Olston and M. Najork. Web Crawling. Foundations
and Trends in Information Retrieval, 4(3):175–246,
2010.

[35] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and D. Johnson. Terrier information
retrieval platform. Advances in Information Retrieval,
pages 517–519, 2005.

[36] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and C. Lioma. Terrier: A High
Performance and Scalable Information Retrieval
Platform. In Proceedings of ACM SIGIR’06 Workshop
on Open Source Information Retrieval (OSIR 2006),
2006.

[37] A. Patterson. Why writing your own search engine is
hard. Queue, 2(2):48, 2004.

[38] J. Rutherglen. Scaling solr to 3 billion documents.
http://2010.lucene-eurocon.org/slides/

Scaling-Solr-to-3Billion-Documents_

Jason-Rutherglen.pdf. Apache Lucene EuroCon
2010.

[39] V. Singh. A comparison of open source search engines.
http://zooie.wordpress.com/
2009/07/06/a-comparison-of-open- source-search-
engines-and-indexing-twitter/, 7 2009.

[40] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: a language-model based search engine for
complex queries. Technical report, University of
Massachusetts Amherst, 2005.

