
ezDL: An Interactive Search and Evaluation System

Thomas Beckers
Information Engineering

University of Duisburg-Essen
Duisburg, Germany

thomas.beckers@uni-
due.de

Sebastian Dungs
Information Engineering

University of Duisburg-Essen
Duisburg, Germany

sebastian.dungs@uni-
due.de

Norbert Fuhr
Information Engineering

University of Duisburg-Essen
Duisburg, Germany

norbert.fuhr@uni-due.de

Matthias Jordan
Information Engineering

University of Duisburg-Essen
Duisburg, Germany

matthias.jordan@uni-
due.de

Sascha Kriewel
Information Engineering

University of Duisburg-Essen
Duisburg, Germany

sascha.kriewel@uni-
due.de

ABSTRACT
The open-source system ezDL is presented. It is an interac-
tive search tool, a development platform for interactive IR
systems, and an evaluation system. ezDL can be used as a
meta-search system for heterogeneous sources or digital li-
braries, allows organizing and filtering of merged results, of-
fers support for search sessions as well as a personal library
for storing different document types. The ezDL framework
is easy to extend and is based on a service-oriented architec-
ture. In addition, support for performing user studies and
eye tracking is provided. ezDL has been used as a system in
several funded research projects.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software

General Terms
Human Factors, Experimentation

Keywords
interactive search system, framework

1. INTRODUCTION
In this paper we present ezDL, an open-source1 software
for building highly interactive search user interfaces with

1ezDL is licensed under GPL v3. Other licenses can be used
on request. The main web site for developers and further in-
formation can be found here: http://ezdl.de/developers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR 2012 Workshop on Open Source Information Retrieval (OSIR 2012)
Portland, Oregon, USA

strategic support. It builds on the ideas developed and im-
plemented within the Daffodil project from 2000 to 2009 [11,
16, 13], but uses more modern software technologies and in-
terface design methods.

The ezDL framework can be characterized by three main
purposes. It is foremost i) a working interactive tool for
searching a heterogeneous collection of digital libraries. In
addition to that, it is ii) a flexible software platform provid-
ing a solid base for writing customized applications as well
as iii) a system that can be used for many different types of
user evaluations.

Today many systems covering one or more aspects of ezDL
exist but to the best of our knowledge the concept of unifying
them into one single framework is unique. In the following
paragraphs similar systems related to the different aspects
of ezDL are presented.

Interactive Search Tools
Querium [9] is an interactive search system featuring a con-
cept that focuses on complex recall oriented searches. It
aims at preserving the context of searches and allows rele-
vance feedback to generate alternative result sets. At the
moment, the system is limited to two data sources.

Numerous tools exist that focus on storing and managing
a personal library or citations. A popular example is Mende-
ley2 which also offers different front ends and collaborative
features. Other citation tools include CiteULike3 and Con-
notea4

CoSearch [1] is a collaborative web search tool. It offers
a user interface that can simultaneously take input from
different users sharing a single machine. Mobile devices can
be used to contribute to a collaborative search session. Data
is acquired by using a popular web search engine.

Development Platforms
SpidersRUs Digital Library Toolkit [8] is a search engine de-
velopment tool. The developers strove for a balance between
easiness of use and customizability. The toolkit also features

2http://www.mendeley.com/
3http://www.citeulike.org/
4http://www.connotea.org/



a GUI for the process of search engine creation. Results pre-
sentation follows common standards of popular web search
engines. Support for complex search sessions, e.g. a tray or
citation management tool are not included.

Evaluation Systems
The Lemur project5 includes a query log tool bar that can
be used to capture usage data. It can collect queries as well
as user interaction such as mouse activity and is available
as open source.

Bierig et al [7] presented an evaluation and logging frame-
work for user-centered and task-based experiments in in-
teractive information retrieval that focuses on “multidimen-
sional logging to obtain rich behavioural data” of searchers.

2. CONCEPTS
As a re-implementation of the Daffodil project [11], ezDL
builds on many of the same concepts and principles as Daf-
fodil. Like Daffodil it is a “search system for digital libraries
aiming at strategic support during the information search
process” [16]. Its primary target group is not that of ca-
sual users using a search system for short ad-hoc queries.
Instead the software aims to support searchers during com-
plex information tasks by addressing all the steps in the Dig-
ital Library Life Cycle, as well as integrating search models
originally proposed by Marcia Bates [2, 3, 4].

The Digital Library Life Cycle divides the information
workflow into five phases [18], beginning with the discov-
ery of information resources, which in ezDL is supported
through the Library Choice view. This is followed by the
retrieval phase of information search, the collating of found
information using the personal library and tagging, inter-
preting the information, and finally the re-presenting phase
where new information is generated. In all phases, different
so-called tactics or stratagems can be employed by searchers
or information workers, which we try to support through
ezDL.

The notion of tactics and stratagems as higher-level search
activities was introduced by Bates [2, 3, 4]. Based on search
tactics used by librarians and expert searchers, Bates de-
scribes basic moves, as well as higher-level tactics, stratagems,
and finally strategies that build on lower-level activities.

ezDL already offers direct support for some of those higher-
level activities, e.g. through the use of sharing functionali-
ties to support collaborative idea generation, through term
suggestions of synonyms or spelling variants, extraction of
common results terms, or through icons in the result items
that allow easy monitoring of performed activities.

During query formulation, ezDL provides term sugges-
tions to the user (e.g. synonyms and related terms). These
are an example for the concept of proactive system support.
Bates describes “five levels of system involvement (SI) in
searching” [4]. The proactive support of ezDL belongs to
the third level, where a search system (through monitoring
of user activities) can react to the search situation with-
out prompting by the user. Users are informed of improve-
ment options for their current move. Jansen and Pooch [12]
demonstrated that proactive software agents assisting users
during their search can result in improved performance of
users. The effectiveness of such suggestions has also been
shown for the Daffodil system [20].

5http://www.lemurproject.org/

Tran [21] implemented a prototype of a support tool for
the pearl growing stratagem. The tool shows citation rela-
tionships between documents in a graph and allows the user
to follow these relationships and keep track of the search
progress using document annotations. Figure 1 shows a
screenshot of a pearl growing session with some documents
marked as relevant. It is planned to include this tool in ezDL
in the near future.

Figure 1: A close-up of the pearl growing tool

Proactive support of higher-level activities, such as sug-
gestion of tactics and stratagems for improvable search situa-
tions [14, 15] or suggestion of search strategies with scaffold-
ing support, is currently planned and will likely be available
for ezDL within the next nine months.

3. ARCHITECTURE
ezDL is a continuation of the Daffodil project and therefore
shares its main ideas: meta-search in digital libraries and
strategic support for users. Its overall architecture likewise
has inherited many features from Daffodil. Figure 2 provides
a high-level overview of the system.

The system architecture makes extensive use of separa-
tion of concerns to keep interdependencies to a minimum
and make the system more stable. This is true on the sys-
tem level where a clear separation exists between clients and
backend, but also within the backend itself, where individ-
ual “agent” processes handle specific parts of the functional-
ity, and even within these agents. The desktop client, too,
is separated into multiple independent components called
“tools”. ezDL is completely written in Java using common
frameworks and libraries.

3.1 The Backend
The backend provides a large part of the core functional-

ity of ezDL: the meta-search facility, user authorization, a
knowledge base about collected documents, as well as wrap-
pers and services that connect to external services. Func-
tionality that provides collaboration support and allows stor-
ing of documents and queries in a personal library is also
located here.

The right part of Figure 2 shows the structure of the
backend. The components of the backend are agents: in-
dependent processes that provide a specific functionality to
the system. Agents use a common communication bus for
transferring messages between each other.



Backend

MTA 1

MTA 2

MTA n

ACM
Wrapper

IEEE
Wrapper

DBLP
Wrapper

Wiley
Wrapper

Directory
Query
History
Agent

Repository
Agent

Search
Agent

Communication bus (e.g. CORBA or JMS)

Client 1

Client 2

Client 3

Client m

Client 4

Figure 2: Overall architecture of ezDL

The Service-based Agent Infrastructure
Since every kind of functionality is taken care of by different
agents, the crash of one agent generally only disrupts this
particular functionality. For example, if the search agent
crashes, detail requests and the personal library are still
working. Also, it is possible to run multiple agents of each
kind for load balancing and as a fail-safe mechanism.

Agents are subdivided into the main agent behaviour (reg-
istering with the Directory, sending and receiving messages,
managing resources) and components that deal with specific
requests. These components—the request handlers—are in-
dependent and process requests concurrently.

Beginning on the left, an MTA (Message Transfer Agent)
is an agent that provides clients with a connection point to
the backend. MTAs are responsible for authenticating users
and translating requests from clients into messages to cer-
tain agents. E.g., if a client requests a search for a given
query, the query from the client is translated into a message
to the Search Agent. This mechanism creates a clear separa-
tion between the client view of the system and the internal
workings: the client doesn’t have to know how many agents
are serving search queries and new search agents could be
instantiated as the system load demands. Currently there is
only one MTA implementation, which uses a binary protocol
over a TCP connection, but it is possible to provide other
protocols—e.g. SOAP—by using separate MTA implemen-
tations.

The Directory is a special agent that keeps a list of agents
and the services they provide. Upon start, each agent reg-
isters with the Directory and announces the services it pro-
vides.

The connection to remote (or local) search services (e.g.,
digital libraries or information retrieval systems) is managed
by wrapper agents—in Figure 2 the four agents on the right
hand side. They translate the internal query representation
of ezDL into one that the remote service can parse and trans-
lates the response of the remote service into an appropriate
document representations to be handled by ezDL.

Example: Running Search Queries
If a client requests a search, it sends a request to the MTA
with a query in ezDL notation and a list of remote services
that the query should be run on. The request is handled
by the MTA which forwards it to the Search agent. The
Search agent asks the Directory for the name of agents that
provide a connection to the remote services requested by the
client. After receiving that list, the Search agent forwards
the query to each of these agents. The agents then trans-
late the query into something that the remote service under-
stands and sends the answer of the remote service back to
the search agent. The search agent collects all answers from
all the remote services, merges duplicates and reranks them.
Reranking is either performed by using the original RSVs or
by using standard Lucene6 functionality. The answer set is
then sent back to the MTA that requested the search. The
MTA sends the answer to the client. The search agent also
forwards the collected documents to the repository agent
which is responsible for serving requests for details on doc-
uments (e.g., if the user wants to see the full text).

3.2 The Frontend
There are multiple frontends for ezDL: among them the

basic desktop client and a web client. Specialized fron-
tends exist for various applications (see Use Cases). Clients
for iOS and Android tablets are currently being developed.
This subsection details the architecture of the desktop client,
since this is the main client for ezDL.

Tools and Perspectives
A tool comprises a set of logically connected functionalities.
Each tool has one or more tool views, interactive display
components that can be placed somewhere on the desktop.
A configuration of available tools and the specific layout of
their tool views on the desktop is called a perspective. Users
can modify existing predefined perspectives as well as create
custom perspectives. The desktop client already has many

6http://lucene.apache.org/core/



B
BC

D

E

A

F

Figure 4: The Desktop client during a search session

Figure 3: Architecture of the desktop client

built-in tools and functionalities and can be easily extended
(see Figure 4):

• The Search Tool (A) offers a variety of query forms for
different purposes and views to present the results in
list or grid form, as well as a Library Choice view for
selecting information sources. Results can be sorted
or grouped by different criteria, filtered, and exported.
An extraction function (F) can be used to extract fre-
quent terms, authors, or other features from the result
and visualize them in form of a list, a bar chart or a
term cloud. Grouping criteria or extraction strategies

are encapsulated and new ones can easily be added, as
can be new renderers for result surrogates.

• The Personal Library (B) allows to store documents
or queries persistently for authenticated users. Within
their personal collection, users can filter, group and
sort (e.g. by date of addition), organize the documents
with personal tags, and share them with other users.
Additional documents can be imported into the per-
sonal library as long as their metadata is available in
BibTeX format.

• The Search History (C) lists past queries for re-use and
allows grouping by date and filtering.

• The Detail View (D) shows additional details on indi-
vidual documents, such as thumbnails or short sum-
maries where available, or additional metadata not in-
cluded in the surrogate that is shown in the result list.
A detail link can be provided to retrieve the fulltext.

• A Tray (E) can be used to temporarily collect relevant
documents within a search session.

Communication with the Backend
Like the backend, the desktop client uses a messaging in-
frastructure for communication between otherwise indepen-
dent components. In Figure 3 a diagram of the components
is shown. On the left, four of the available tools can be
seen with their connection to the internal communication
infrastructure (search, personal library, details, and query



Figure 5: The search form with suggestions

history). On the right hand side, a few subsystems are pre-
sented, one of which is the external communication facility
that connects the client to the backend.

As an example, if the user enters a query in the search
tool and presses the “search” button, an internal message
is sent to the communication facility, which transmits the
query to the backend. When the answer is received, the
communication facility routes the message back to the search
tool.

Since from the client’s point of the view the backend is
hidden behind the MTA, further details are omitted in the
backend part of Figure 3.

Query Processing and Proactive Support
The queries that users enter are expressed in a grammar spe-
cific to ezDL that is quite flexible and allows simple queries
like term1 term2 term3 as well as more complicated ones
like Title=term1 AND (term2 NEAR/2 term3). Internally,
the query is represented as a tree structure that can also
keep images as comparison values so ezDL can be used to
specify image search queries.7

During query formulation, the user’s interaction is ob-
served by the system. If the system notices a break in
the user’s typing, the query is processed by modules of the
proactive support subsystem that can either ask the backend
for suggestions or calculate them directly in the frontend.
The suggestions can replace query terms e.g. by spelling
corrections, insert new terms (e.g., for synonym expansion),
or tag terms with concepts from an ontology. The ontology
items become part of the query so that a query can contain
both plain text terms and ontology terms. When suggestions
are found for a term, the term is marked by an underline in
the query text field and a popup list is shown that presents
the suggestions (see Figure 5).

3.3 Extending and Customizing ezDL
Each agent and the desktop client are extensible using a

plugin system. Plugins are registered at a central component
that can later be asked to return plugin objects of a specific
type. As an example, it is possible to add a new proactive
suggestion module to the system that implements a new way
of retrieving suggestions. Also the popup list that shows the
suggestions can be replaced by an alternative. Further uses
of the plugin system are export and import modules and
modules that extract information from the result list.

Adding a new service is usually done by implementing a
new agent. There is an abstract class that takes care of

7This mechanism is used in the Khresmoi project (see Sec-
tion 5) to allow general physician and radiologists to search
for medical images.

most issues but the actual functionality. This is usually im-
plemented using specialized classes (request handlers) for
which there are abstract implementations, too. Thus, devel-
opers can concentrate on the business logic.

Connecting to a new collection for searching (a digital
library, a local IR system, a BibTeX file, etc.) is accom-
plished by implementing a wrapper agent. These are agents
specialized in translating between ezDL and a remote sys-
tem. Remote systems can be those that provide a stable
API like SOAP or SQL but also those that only have a
web site and a search form. ezDL has built-in support for
most common fields (e.g. title, author, publication year, ab-
stract) and data types (e.g. text, numbers, images). There
are abstract wrappers available to quickly connect to a Solr8

server. If required, web pages can be scraped using an elab-
orate tool kit that is configured by an XML file. Because of
this, even digital libraries without a proper API can be con-
nected. Sometimes, digital libraries change their web page
layout, breaking scripts that parse their HTML. Configuring
the page scraping using an XML file makes automatic repairs
of the configuration possible. See [10] for an example imple-
mentation based on Daffodil, The approach outlined in this
work uses repeated queries to infer the template elements
of the web pages and step-wise generalisation to find the
location of known information on the page.

There is also a library of code for translating the ezDL
query representation into other languages.

Agents—and, thus, wrapper agents—announce themselves
to the Directory agent when started. The client can ask
the backend for a list of known wrapper agents, so there
is no need to change any code or configuration outside of
the agent. This also enables developers to store the code
and put it under version control independent from the main
ezDL code.

Often, services in the back end are used in the client in an
individual tool. One example for this is the search facility,
which consists of the search tool in the Swing client and the
search agent in the back end. Writing a new tool for the
Swing client can be done by implementing an OSGi plugin.
The tool code itself is fairly simple since there is an abstract
implementation for the glue code. The remaining task is
implementing a Swing GUI and communicating with the
back end by firing events and listening for an answer.

4. EVALUATING SEARCH SYSTEMS
To support user-centred evaluations, ezDL has a builtin eval-
uation mode that addresses many of the major challenges
inherent in setting up evaluation tasks and tracking user
activity during the experiments. The following is a brief
overview of those functionalities within ezDL directly de-
signed to support evaluations.

Logging user actions
For evaluations with actual users all user actions performed
with the system should be logged for later inspection and
analysis. ezDL has a built-in logging facility that stores all
the interaction data of the user in a relational database (cur-
rently mysql is used). A log session comprises all log events
that a user or the system has triggered. A log event has i) a
unique name identifying this type of event, ii) timestamps
from the frontend and the backend, iii) a sequence number

8http://lucene.apache.org/solr/



to ensure the correct order, and iv) parameters as multiple
key/value pairs. For example, when a user performs a search
for information retrieval in the DBLP and ACM digital
library the corresponding log event may look like this:

event:

name: "search"

clientTimestamp: 1/4/2012 15:26:32,1234

timestamp: 1/4/2012 15:26:32,3456

sequenceNumber: 10

parameters:

query: "information retrieval"

sources: dblp, acm

The logging facility takes care about allocating activities to
sessions and users. If it is required to log some previously
unlogged action, this can be simply integrated by sending a
corresponding logging message to the backend.

Tracking AOIs
Gaze tracking is a method for user-centred evaluation that
has recently gained popularity within the IR field [5, 7]. A
challenge for logging highly interactive systems with chang-
ing interfaces and moving components is keeping track of
their position, so that gaze points or fixation data of users
can be aggregated across so-called Areas of Interest (AOIs,
see Figure 6). This feature has been integrated into ezDL
with the help of the AOILog framework [6].

Fixed layout on screen
The layout of the desktop can be locked to keep UI-related
variance low. With a fixed layout it is no longer possible for
a test subject to open additional tool views or change the
layout of the desktop.

Loading predefined perspectives
Predefined perspectives can be loaded immediately after the
system has been started. This allows the evaluator to cre-
ate custom perspectives that can be used for an evaluation
without selecting them manually.

Splash screen for choosing evaluation settings
A splash screen can be enabled that is shown before starting
the system. It can be used to choose and set settings for
the evaluation session, e.g. a search task description or the
system variant when doing a comparison of different UIs or
system features.

Several user studies have been performed and experimen-
tal systems implemented using ezDL as a base system. The
next section will present some of them in more detail.

5. USE CASES
ezDL is currently running as a live system, and is being used
and extended in a number of projects of various sizes.

The live system9 features all core functionalities that part
of a more specific project. These include a simple and an ad-
vanced search function, various result manipulation options,
a temporary document store, and exporting of meta infor-
mation (e.g. in BibTeX format). Registered users can also
use a personal library to store, annotate and share found
or imported documents. Currently, nine different digital li-
braries are connected to the system focusing on computer

9http://www.ezdl.de/

Figure 6: An ezDL client overlayed with AOIs for
eye tracking (from the HIIR project)

science libraries, but including others like Pubmed and the
Amazon catalogue. The system is publicly available, still
under constant development and updated regularly.

Khresmoi10 is a four year project funded by the EC, which
aims at building a multilingual and multimodal search sys-
tem for biomedical documents. The ezDL framework is used
for all user interfaces developed within the project. These
include variations of the stand-alone Swing client, such as an
interface for search medical images, including 3D data. An-
other version of the interface will be customized to the needs
of general practitioners. For casual users with health related
information needs, an easy to use web based interface (see
Figure 7) is under development. From a functional point of
view numerous new data sources were made available. The
set of searchable data types was extended to cover the spe-
cific demands of the medical domain. The system allows the
user to specify an image as a query to perform a similarity
search. Additional collaborative and social functions will be
added to the full client in later versions.

Within the INEX 2010 Interactive Track ezDL was used
to observe how users act during their search sessions [19].
Valuable insights on user behaviour were gained. An appli-
cation for viewing the logged data and a questionnaire tool
controlling the experiment flow have been implemented.

For the ongoing CAIR11 project an advanced 2010 INEX
ezDL version is used. To answer the question whether clus-
tering of results can improve efficiency of searches with vague
information needs ezDL was expanded by a clustering ser-
vice and visualization [17] (see Figure 8). New data sources
and a browser were added to the system. For the evaluation
a task selection and a questionnaire tool were developed.
Log data generated by ezDL can be analysed automatically.

The AOI logging framework mentioned in Section 4 was
implemented as part of the HIIR (Highly Interactive IR)
project12. The project’s goal is improving interaction with
the system by considering the users cognitive efforts [23, 22].

6. CONCLUSION AND OUTLOOK
10http://www.khresmoi.eu/
11http://www.uni-weimar.de/cms/index.php?id=17632
12http://www.is.inf.uni-due.de/projects/hiir/index.
html.en



Figure 7: The web client used in the Khresmoi project

We presented ezDL, which is a framework system for inter-
active retrieval and its evaluation. Building upon state-of-
the art interface technology and usability results, ezDL can
provide an advanced user interface for many IR applications.
The system can also be easily extended, at the functionality
level as well as at the presentation level; thus, new concepts
for the design of IR user interfaces can be integrated into
ezDL with little effort. Furthermore, the system provides
extensive support for performing user-oriented evaluations.
In the same way as there are various experimental IR back-
end systems, there is now an IR frontend system that allows
for easy experimentation and application of interactive re-
trieval.

Acknowlegments
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement�257528 (KHRES-
MOI). Parts of this work were supported by the German
Science Foundation under grant nos. FU 205/24-1 (HIIR)
and FU 205/22-1 (CAIR).

7. REFERENCES
[1] S. Amershi and M. R. Morris. Cosearch: a system for

co-located collaborative web search. In Proceedings of
the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, CHI ’08, pages
1647–1656, New York, NY, USA, 2008. ACM.

[2] M. J. Bates. Idea tactics. Journal of the American
Society for Information Science, 30(5):280–289, 1979.

[3] M. J. Bates. Information search tactics. Journal of the
American Society for Information Science,
30(4):205–214, 1979.

[4] M. J. Bates. Where should the person stop and the
search interface start? Information Processing and
Management, 26(5):575–591, 1990.

[5] T. Beckers and N. Fuhr. User-oriented and
eye-tracking-based evaluation of an interactive search
system. In 4th Workshop on Human-Computer
Interaction and Information Retrieval (HCIR 2010) @
IIiX 2010, 2010.

[6] T. Beckers and D. Korbar. Using eye-tracking for the
evaluation of interactive information retrieval. In
Proceedings of INEX 2010, pages 236–240, 2011.

[7] R. Bierig, J. Gwizdka, and M. Cole. A User-Centered
Experiment and Logging Framework for Interactive
Information Retrieval. In Understanding the user -
workshop in conjuction with SIGIR’09, 2009.

[8] M. Chau and C. H. Wong. Designing the user
interface and functions of a search engine development
tool. Decision Support Systems, 48(2):369 – 382, 2010.

[9] A. Diriye and G. Golovchinsky. Querium: a
session-based collaborative search system. In
Proceedings of the 34th European conference on
Advances in Information Retrieval, ECIR’12, pages
583–584, Berlin, Heidelberg, 2012. Springer-Verlag.

[10] A. Ernst-Gerlach. Semiautomatisches Pflegen von
Wrappern. Diplomarbeit, Universität Dortmund, FB
Informatik, 2004.

[11] N. Fuhr, C.-P. Klas, A. Schaefer, and P. Mutschke.
Daffodil: An integrated desktop for supporting
high-level search activities in federated digital



Figure 8: The ezDL-based system extended with clustering functionality developed within the CAIR project

libraries. In Research and Advanced Technology for
Digital Libraries. 6th European Conference, ECDL
2002, pages 597–612, Heidelberg et al., 2002. Springer.

[12] B. J. Jansen and U. Pooch. Assisting the searcher:
utilizing software agents for web search systems.
Internet Research: Electronic Networking Applications
and Policy, 14(1):19–33, 2004.

[13] C.-P. Klas, S. Kriewel, and A. Schaefer. Daffodil -
Nutzerorientiertes Zugangssystem für heterogene
digitale Bibliotheken. dvs Band, 2004.

[14] S. Kriewel. Unterstützung beim Finden und
Durchführen von Suchstrategien in Digitalen
Bibliotheken. PhD thesis, University of
Duisburg-Essen, 2010.

[15] S. Kriewel and N. Fuhr. An evaluation of an adaptive
search suggestion system. In 32nd European
Conference on Information Retrieval Research (ECIR
2010), 2010.

[16] S. Kriewel, C.-P. Klas, A. Schaefer, and N. Fuhr.
Daffodil - strategic support for user-oriented access to
heterogeneous digital libraries. D-Lib Magazine, 10(6),
June 2004. available at http://www.dlib.org/dlib/

june04/kriewel/06kriewel.html.

[17] M. Lechtenfeld and N. Fuhr. Result clustering
supports users with vague information needs. In
Proceedings of the 12th Dutch-Belgian Information
Retrieval Workshop 2012, Ghent, Belgium, February
2012.

[18] A. Paepcke. Digital libraries: Searching is not
enough–what we learned on-site. D-Lib Magazine,

2(5), May 1996. http://www.dlib.org/dlib/may96/
stanford/05paepcke.html.

[19] N. Pharo, T. Beckers, R. Nordlie, and N. Fuhr.
Overview of the inex 2010 interactive track. In
Proceedings of the 9th International Workshop of the
Initiative for the Evaluation of XML Retrieval (INEX
2010), 2011.

[20] A. Schaefer, M. Jordan, C.-P. Klas, and N. Fuhr.
Active support for query formulation in virtual digital
libraries: A case study with DAFFODIL. In
A. Rauber, C. Christodoulakis, and A. M. Tjoa,
editors, Research and Advanced Technology for Digital
Libraries. Proc. European Conference on Digital
Libraries (ECDL 2005), Lecture Notes in Computer
Science, Heidelberg et al., 2005. Springer.

[21] V. T. Tran. Entwicklung einer Unterstützung für
Pearl Growing. Diplomarbeit, Universität
Duisburg-Essen, 2011.

[22] V. T. Tran and N. Fuhr. Quantitative analysis of
search sessions enhanced by gaze tracking with
dynamic areas of interest. In The International
Conference on Theory and Practice of Digital
Libraries 2012. Springer tbp, September 2012.

[23] V. T. Tran and N. Fuhr. Using eye-tracking with
dynamic areas of interest for analyzing interactive
information retrieval. In Proceedings of the 35th
international ACM SIGIR conference on Research and
development in Information Retrieval. ACM tbp,
August 2012.


