Design, implementation and experiment of a YeSQL Web Crawler

Pierre Jourlin
Laboratoire d’Informatique d’Avignon
Université d’Avignon et des pays de Vaucluse
BP 1228, 84911 AVIGNON CEDEX, France
Pierre.Jourlin@univ-avignon.fr

Romain Deveaud
Laboratoire d’Informatique d’Avignon
Université d’Avignon et des pays de Vaucluse
BP 1228, 84911 AVIGNON CEDEX, France
Romain.Deveaud@univ-avignon.fr

Eric Sanjuan-Ibekwe
Laboratoire d’Informatique d’Avignon
Université d’Avignon et des pays de Vaucluse
BP 1228, 84911 AVIGNON CEDEX, France
Eric.Sanjuan@univ-avignon.fr

Jean-Marc Francony
UMR PACTE
Université Pierre Mendès France - Grenoble 2
Grenoble, France
jeanmarc.francony@umrpacte.fr

Françoise Papa
UMR PACTE
Université Pierre Mendès France - Grenoble 2
Grenoble, France
francoise.papa@umrpacte.fr

ABSTRACT
We describe a novel, “focusable”, scalable, distributed web crawler based on GNU/Linux and PostgreSQL that we designed to be easily extendible and which we have released under a GNU public licence. We also report a first use case related to an analysis of Twitter’s streams about the french 2012 presidential elections and the URL’s it contains.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms ; Design ; Experimentation

Keywords
Web Crawler; Web Robot; Web Spider; PostgreSQL ; Twitter ; Web ; Social Networks

1. INTRODUCTION
Where scalability is concerned, Apache Nutch1 and Heritrix2 are probably the best-known and the most-accomplished open-source web crawlers. They both are sensible choice for Information Retrieval (IR) researchers who intend to build large web corpora. They can be configured to specific needs and can be extended and modified. However, the

1http://nutch.apache.org/
2https://webarchive.jira.com/browse/HER

Java-language source code3 of these two software toolkits are rather large and complex: 29349 lines of source code for Apache Nutch (v1.4) and 107377 for Heritrix (v3.1.0). Another possible drawback from the researcher’s perspective is that they both access the data using unconventional systems : Nutch relies on HadoopTM and Heritrix relies on its own code for handling Internet Archive ARC files.

These systems belong to the “NoSQL” or “UnQL” approaches, supported by the assumption that the widely used SQL relational database standard is a inherent cause of scalability issues. However, this assumption is contested by several database experts. For instance, recent developments around the PostgreSQL project allow it to perform as well as- and sometimes outperform some - NoSQL databases[3]. This alternative approach has been named YesQL.

By taking profit of the capabilities of a PostgreSQL server, we implemented our web crawler in a total of only 911 lines of C-language code and 200 lines of SQL and PL/pgSQL. At the time this article was written and as far as we know, this is the only available web crawler that is based on PostgreSQL. The tests we performed have shown that instances of the crawler could process over 20 millions of URLs in a few days without beeing noticeably slowed by database operations.

We thus believe this web crawler is well worth considering by IR researchers and programmers.

2. SOFTWARE DESCRIPTION
The source code repository is located at GitHub4 under a GNU public license. Everyone can therefore easily download an up-to-date version of the toolkit, provide user’s feedback, or join the developer’s team. The crawling system can be briefly summarized as follows:

3There are alternatives written in Python, e.g. : Mechanize (36419 lines of code) and Scrapy (23096 lines of code)
4https://github.com/jourlin/WebCrawler

The copyright of this article remains with the authors. SIGIR 2012 Workshop on Open Source Information Retrieval. August 16, 2012, Portland, Oregon, USA.
Figure 1: Web crawler organisation

- Links and URLs' data are stored in a PostgreSQL\(^5\) database.
- The user can launch several crawler’s instances on several, possibly distant machines.
- Each instance of the crawler iteratively:
 1. fetches a list of URLs to be explored by sending a simple SQL query to the database;
 2. downloads the web pages;
 3. extracts new hypertext links to possibly new URLs;
 4. sends the new data back to the server.

Figure 1 shows how the communication between internet, web crawler’s instances and the PostgreSQL server.

The choice of URLs to be fetched is made by one SQL query and two PL/pgSQL additive scoring functions: one scores the URL according to its content, the other scores the URL according to the textual context in which they are linked. The programmer can thus easily implement any focused crawling strategy by modifying a single SQL fetch query and two scoring functions. The user can write them in PL/pgSQL in order to take advantage for instance, of PostgreSQL regular expressions. In order to achieve even better performance, he might also write them in C-language and take benefit of PostgreSQL’s dynamic loadable objects capability. Figures 2 and 3 show a scoring function in PL/pgSQL that calculates a weighted count of keywords occurring in the URL itself (Figure 2) or in the anchor text that links to it (Figure 3).

Each crawler instance is only responsible for downloading and processing web pages. The downloading stage is per-

\(^5\)http://www.postgresql.org/
formed by the very mature GNU/Wget utility\(^6\). The database system is responsible for the coordination of multiple crawlers (thanks to SQL transactions), uniqueness of stored URLs and links (thanks to SQL constraints), crawling strategy (thanks to PL/pgSQL or C functions), etc. Insertions into a single SQL view triggers insertions into the more complex internal table structure.

3. USE CASE: COVERAGE OF "TWEETED" URLs

3.1 Context

Recent open free network visualisation tools have made easier the qualitative analysis of large social networks\(^1\). Based on these tools, scientists in humanities can visualize large relational data which lead to new hypothesis that will require further network crawling and data extraction. We show an example of such interaction between humanities and computer scientists made possible by our YeSQL crawler.

Political scientists have formulated the hypothesis that for the 2012 French presidential elections, candidates’ communication departments accepted Twitter as a target media and integrated it to their communication system.

Their strategy was to better control their communication and to improve the dissemination of political messages they convey, in order to influence public opinion. What was at stake? The saturation and the meshing of the media sphere, with coherent messages whatever the channel of dissemination they choose.

The empowerment of their communication during the campaign was linked to their capacity:

- to consolidate their network of opinion leaders thanks to Twitter,
- to be more reactive and to communicate “just in time” if unexpected events occur,
- to strengthen the efficiency of their activists network.

As a consequence, the relationships between their different communication devices has to be analysed.

3.2 Experiment

In order to evaluate this hypothesis, we conducted a capture of Twitter’s messages and a parallel though independent web crawl of candidate web sites and newspaper’s political pages. We then attempted to compare the two data sources. Twitter’s markers (e.g. '#' and '@') facilitates the political pages and candidates’ web sites. We then attempted to compare the two data sources.

Political pages. We then attempted to compare the two data sources that will require further network crawling and data extraction. We show an example of such interaction between humanities and computer scientists made possible by our YeSQL crawler.

Political scientists have formulated the hypothesis that for the 2012 French presidential elections, candidates’ communication departments accepted Twitter as a target media and integrated it to their communication system.

Their strategy was to better control their communication and to improve the dissemination of political messages they convey, in order to influence public opinion. What was at stake? The saturation and the meshing of the media sphere, with coherent messages whatever the channel of dissemination they choose.

The empowerment of their communication during the campaign was linked to their capacity:

- to consolidate their network of opinion leaders thanks to Twitter,
- to be more reactive and to communicate “just in time” if unexpected events occur,
- to strengthen the efficiency of their activists network.

As a consequence, the relationships between their different communication devices has to be analysed.

<table>
<thead>
<tr>
<th>Depth</th>
<th># crawled URLs</th>
<th>% URLs covered (a)</th>
<th>% URLs covered (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>0.08</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>1026</td>
<td>0.73</td>
<td>4.00</td>
</tr>
<tr>
<td>3</td>
<td>8543</td>
<td>1.28</td>
<td>8.00</td>
</tr>
<tr>
<td>4</td>
<td>59883</td>
<td>3.06</td>
<td>12.00</td>
</tr>
<tr>
<td>5</td>
<td>368247</td>
<td>7.33</td>
<td>27.00</td>
</tr>
<tr>
<td>6</td>
<td>2756671</td>
<td>15.28</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Table 1: Tweeted URLs’ coverage. (a): for all 4777 tweeted URLs ; (b): for the top 100 most frequently tweeted URLs. “Depth” is the minimum number of hyperlinks that one has to follow to reach an URL from the initial set.

26638 of those tweets contained a shortened URL (28.4%) from a set of 10447 unique shortened URL corresponding to 4777 unique effective URLs.

This filtering produced a homogeneous corpus based on a usage logic and identical announcement rules. The reference to candidates’ addresses produces a multi-voiced discourse folded up on the proper space of Twitter. Each “tweeted” URL is functioning as an interface with the outside of this space and brings back external information from the media space. Their identification is important as a marker of discourse evolution and also for its anchorage in the media and political topicality.

Independently from this collection, we started a web crawler instance that was allowed to download 20 pages in parallel, from February 20th at 00:00am to February 26th at 10:55pm. It was initiated on 32 initial URLs from newspapers’ political pages and candidates’ web sites and collected over 2.7 millions of URLs. In the following tables, we call “depth” the minimum number of links needed to navigate from an initial URL (depth=0) to a crawled URL.

Table 1 shows the proportion of tweeted effective URLs that were crawled during this period. The fourth column shows that most frequently tweeted URLs are more likely to be covered by the crawl. These results show that most popular URLs have a significant probability to be directly retrieved by the crawler after millions of URLs have been crawled.

Figure 4 shows the proportion of tweeted URLs found in the crawling per tweeted frequency (number of times that the URL was tweeted). This gives an estimation of the crawling coverage with regard to URL’s visibility.

Table 2 shows that the similar problem of tweeted domains instead of tweeted URLs is substantially easier. Indeed, the coverage is noticeably higher when only the URL’s domains are considered. In particular, 100 most tweeted domains are almost totally (97.73%) covered by the web crawl.

More generally, we can observe that high “domain” coverage figures are obtained for relatively low “depth” levels. This suggests that the most popular URLs originates from sites that are the nearest neighbours of the 32 initial newspapers’ political pages and candidates’ web sites.
This is not surprising considering that the web of political blogs is stable along month periods [2]. Moreover, all main French newspaper offer a blog service to their readers. The readers contributions to their websites allow them to capture most of the queries on the web dealing with politics.

Results in Table 2 also allow us to expect much better coverage of URLs by simply launching more crawler’s instances, on a single or on multiple machines.

4. CONCLUSION
The web crawler we presented does not have all the functionalities that offer older and more ambitious projects such as Nutch and Heritrix. However, we have shown that recent functionalities introduced in PostGreSQL about data structures, triggers and language programming allow to develop powerful web mining tools that can deal with highly redundant data as well as less frequent signals. We illustrated this with a scalable crawler that can explore web networks at a fine grained level. In particular, this crawler can help in comparing the web to social networks like Twitter.

In this particular configuration and for this domain, current events about the french electoral campaign irrigates the two information spaces, the web and Twitter. The practice of “tweeting” URLs becomes usual in the context of modern approaches of information reporting and monitoring.

As we entered this field of investigation by studying the political “actors”, we saw that a significant part of original informations are produced, published and tweeted by these actors.

We could also question the existence of significant reporting practices outside the control of political apparatus’ dissemination strategies. If our results are confirmed in finer grain analysis, we will be able to reconsider the self-organising hypothesis that people tend to associate to social networks.

5. REFERENCES